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Chapter 1

What is Probability?

Probability is the most important concept in modern science, especially as nobody has
the slightest notion of what it means. — Bertrand Russell

Although this question could be considered purely philosophical and not practical,
it turns out that differences in the basic conception of what probability is have led
to very concrete differences in how it is used to analyze data. For this reason, let us
briefly consider it.

Of course the concept of certain outcomes being more probable than others has
been with us for as long as people have been around. You can make the argument that
even some animals have an understanding of probability in that they will anticipate
an event without fully committing to it happening. For example, a dog will prepare to
chase a ball when it is picked up, but won’t go running off until it is actually thrown.
Probability in the sense of expressing preferences based on inconclusive information
can be considered the basis of intelligence. When no direct, deductive answer is
available, an intelligent person makes an educated guess as to the probability of a
certain outcome. This is why probability and statistics are inextricably linked to
machine learning and artificial intelligence. As scientists, we seek to use probability
to link uncertain measurements and observations to insights about the natural world
and/or predictions of future measurements or observations.

The intellectual difficulties and disagreements arise when one tries to make prob-
ability quantitative and systematic. There have been several approaches to putting
probability theory on a solid foundation. We will consider the two most commonly
cited (for a more lengthy discussion of other alternatives see ”Interpretations of Prob-
ability” in The Stanford Encyclopedia of Philosophy).
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10 CHAPTER 1. WHAT IS PROBABILITY?

1.1 Frequentist interpretation of probability

Imagine there is some event, instance, or outcome of an experiment or observation
called A. The probability of A is the fraction of times A occurs when the experiment
or observation is repeated in the same way or circumstances an infinite number of
times. We can write this symbolically as

P (A) = lim
N→∞

number of trials where A is true

N(total number of trials)
(1.1.1)

This is the traditional definition of probability used by Fermat and Pascal in their
famous correspondence on gambling problems in 1654, by Jacob Bernoulli in his Ars
Conjectandi (The art of Conjecturing) 1713 and by Laplace in his Théorie analytique
des probabilités (Analytic Theory of Probability) 1812. It was almost universally used
for centuries despite no one ever having done anything exactly the same way twice let
alone an infinite number of times.

Applying this definition to any physical phenomenon requires a partitioning of the
world into things that are known and fixed on each repetition of the observation and
those things that are not known and change every repetition. If nature is deterministic
and an experiment could be set up exactly the same way in all respects then the
outcome would always be the same and probability would not apply. Of course, even
in classical physics, it is not possible to know the state of every atom and photon that
might possibly influence your measurement apparatus (or brain). It is these things
that change when repeating the observation.

This partitioning between known and unknown factors seems reasonable when we
talk about the positions and momenta of particles in a gas or the flipping of a coin,
but in many other common situations where probability is used, it seems less well
defined. Say someone tells you that there is a 30% probability that candidate A will
win an election tomorrow. Of course, an identical election will never be run again
and was never run in the past. There are many factors, known and unknown, that
could affect an election. This statement was probably based on polling data. The
uncertainty is usually derived from assuming that everyone has already decided for
whom they will vote. The uncertainty in the prediction comes only from the fact that
the pole contains only a subsample of the total voters. If the pole were done again
with a new subsample it would be different. You can count up all possible subsets
of voters that could be in the pole and define the probability as the fraction of the
subsets in which candidate A wins. This agrees with the frequentist definition if you
assume that each possible subset occurs equally frequently when the pole is repeated.
This doesn’t account for people changing their minds, deciding not to vote, or there
being a snowstorm on the day of the election, so if the election were to occur over
and over again 30% would not be the right prediction for the fraction of elections won
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by candidate A. Even if you where to repeat the pole before one election it seems
likely that some people’s opinion of candidate A would have changed in the meantime.
The 30% seems like a completely unverifiable claim. If scientific knowledge must be
reproducible to be considered true then it would seem that any such argument should
be considered unscientific. And yet probability through statistics is at the foundation
of all quantitative measurements.

Let us be a bit more practical. Let’s say we don’t need an infinite number of trials,
but just a very large number of them. Let’s say we flip a coin a very large number of
times. If we did it say one billion times we would not expect that exactly 500 million
times it would be heads. We would expect that roughly half, but not exactly half of
the times it would be heads even if the probability of getting heads in each flip is 1/2.
We might try to quantify how close the number of heads should be to 500 million,
but in doing so we would need to use a probabilistic argument that would use the
very concept we are trying to define.

Many statisticians and philosophers have found this definition of probability prob-
lematic. Despite this, it is the definition usually used by scientists when they are
forced to address this subject.

1.2 Subjective or Bayesian interpretation of prob-

ability

Thomas Bayes (1701 - 1761) (and initially Jacob Bernoulli 1655-1705) had a different
conception of what probability is although the idea was not put on a firm theoretical
foundation until the 1940s and 50s by G. Polya, R.T. Cox, and E.T. Jaynes. It did
not make its way into common use in science, in the form of Bayesian statistics, until
relatively recently (80s and 90s for astrophysics).

In this school of thought, probability theory is an extension of formal logic to
situations where the truth or falsehood of a proposition (e.g. ”It will rain tomorrow.”
or ”The mass of the Earth is between 5.972×1024 kg and 5.978×1024 kg.”) cannot be
deduced conclusively by deductive reasoning. A proposition or statement about the
world has a probability assigned to it that depends on the evidence for and against
its truth. When deductive reasoning can be applied conclusively this function is
either zero (false) or one (true). In this way, symbolic logic is a limiting case of
probability theory. Surprisingly, from just the following requirements (or desiderata)
on the probability function of a proposition you can deduce the rules of probability
(section 1.5) and show that they are complete without ever mentioning randomness
or repetition of experiments.

Desiderata:
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1. Degrees of plausibility are represented by real numbers.

2. The measure of plausibility must exhibit qualitative agreement with rationality.
This means that as new information supporting the truth of a proposition is
supplied, the number that represents the plausibility will increase continuously
and monotonically. Also, to maintain rationality, the deductive limit (plausi-
bility 1 and 0) must be obtained where appropriate.

3. Consistency

(a) Structured consistency : If the conclusion can be reasoned out in more
than one way, every possible way must lead to the same result. (Logically
equivalent statements must have the same weight.)

(b) Propriety: The theory must take account of all information that is relevant
to the question.

(c) Jaynes consistency: Equivalent states of knowledge must be represented
by equivalent plausibility assignments. For example, if (A,B)||C = B||C,
then the plausibility of (A,B)||C must equal the plausibility of B||C. (Here
|| is logical ”or” and , is logical ”and”).

(taken from Gregory (2006)).
These foundational proofs are very interesting, but outside the scope of this course

(for those that are interested see chapter 2 of Gregory (2006) or, more comprehen-
sively, Jaynes (2003)). One thing that is of importance here is that this definition
allows one to define the probability of something that would not usually be consid-
ered a random variable or a repeated event. It also establishes the accumulation of
supporting evidence as central to the meaning of probability. Probability is a measure
of knowledge, or ignorance, of an event and not a property of the event itself. These
principles are central to the Bayesian method of parameter estimation and model
selection which we will study later.

1.3 classical interpretation of probability

The ”classical interpretation” of probability is more of a prescription for calculating
probabilities than a definition of probability. It relies on identifying events that
are equally likely or probable and then grouping the events to find the probabilities
of more complicated events. The principle of indifference holds that each of n
mutually exclusive events that encompass all possibilities (collectively exhaustive)
should be given probability 1/n if there is no reason to favor one over any other.
This is often the argumentation used in classical statistical mechanics where each
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micro-state of the system is taken to be equally probable. If one then says that the
probability of being in either of two mutually exclusive states is the sum of their
probabilities and that some of the probabilities of being in all possible states is one
then you can find a numerical value for the probability of each state. A macro-state
(one with temperature equal to some value or total energy equal to some value)
corresponds to many micro-states so by adding up their probabilities you can find the
probabilities of macro states which will not necessarily be equal.

This approach is limited to a restricted class of problems where these fundamental,
equally probable states can be identified and, by itself, leaves open some questions of
interpretation. What does it mean that two states are equally probable? What does
the probability of a macro-state mean? Another problem is that it is not obvious
that all events that we commonly apply probability to can be reduced in this way to
a collection of equally probable, mutually exclusive events. How do you apply this
to the election? Or an unfair coin? This also presupposes the rules for combining
probabilities, which we will get to in a moment, without any justification for them.

1.4 Quantum mechanical probability

Probability according to the Copenhagen interpretation of quantum mechanics is a
fundamentally different thing than the probability that was in use before. In the
frequentist interpretation of probability, it is assumed that there are some ”hidden
variables” that are different in every trial. It is often said that Bell’s inequalities
prove that hidden variables cannot exist. This is not actually true. Bell’s inequalities
and their experimental verification show that any complete quantum theory must be
nonlocal. Viable deterministic, hidden variable extensions to quantum theory exist,
most notably the theories of David Bohm. In these theories, probability would have
its classical meaning - hidden variables have definite values we just don’t know them,
and in some cases can’t know them. The price is a seeming violation of special
relativity.

In the more traditional ”Copenhagen interpretation” of QM probability plays a
strange role. When a measurement is made the square of the wave function gives the
probability of an observation, but up to that point, the outcome is not determined,
not just difficult to determine. This makes probability a property of physical systems
and not solely a property of the observer’s ignorance. This seems to imply an intimate
connection between physical laws and human thought! There are extensions to QM
with ”spontaneous collapse” where a definite physical prescription is given of how and
when a wave function collapses. Probability still seems to be a physical thing in these
theories in contradiction to the traditional interpretations of it. Still, further out
there are Everett’s many-worlds interpretation and the many-minds interpretation.
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A B A,B A,B A||B A||B A||B A,B A,B A,B A||B A||B
F T F T T T F F T F T F
F F F T T F T T F F T T
T T T F F T F F F F T T
T F F T T T F F F T F T

Table 1.1: The truth table for binary logical expressions. Statements with the same
truth table are logically equivalent. Note that A,B = A||B and A||B = A,B because
their truth tables are the same.

This is a subject for a different course (or a Star Trek episode) so I will go no further
here, but those that are interesting might consult Norisen (2017) for an interesting
treatment of the subject.

1.5 the rules of probability

Suppose A, B, ... are events that either occur or don’t occur, that is they have values
true or false (or 0 and 1 if you prefer). P (A) is the probability of A occurring or
being true. We can combine events in one of two ways. (A,B) means ”A and B”.
It is true if both of them are true and false otherwise. (A||B) means ”A or B” it is
true if either A or B is true. It is true if both are true. A means ”not A”. Note that
A||B = A,B and A,B = A||B in the sense that there are no combinations of trues
and falses for A and B that give different answers on either side of the equality. See
table 1.1. In the language of Boolean algebra, they have the same truth table and
are therefore equivalent statements. Their probabilities must also be the same.

P (A,B) is called the joint probability of events A and B. P (A||B) is often
called the disjoint probability of events A and B.

P (A|B) is called a conditional probability. It means the probability of A given
that B is true. You can imagine every probability being a conditional probability
where it is ”conditioned” on everything that you assume about the state of the Uni-
verse. Some of these things are assumed to be irrelevant and are left out. Some
might be relevant but are taken for granted so they are left out. The probability that
a coin comes up heads does not depend on the time of day. It does depend on the
assumption that it is a fair coin - no more likely to be heads than tails - although it
might not always be stated. This is a simple example of a statistical model for the
experiment. The three fundamental rules of probability theory are

P (A) ≥ 0 positive semidefinite
P (A,B) = P (A)P (B|A) product rule
P (A) + P (A) = 1 sum rule

(1.5.1)
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These rules can be derived from the basic requirements or ”desiderata” stated before
in section 1.2 , but they can also be taken as axioms. From these two rules and logic
rules we can derive all the necessary properties of probability.

Several particularly useful results follow from these rules. From the logical re-
quirement that (A,B) is the same as (B,A) and the product rule we get

P (A|B) = P (A)P (B|A)
P (B)

Bayes’ theorem (1.5.2)

Applying the sum rule to (A||B) gives

P (A||B) = 1− P (A||B) (1.5.3)

= 1− P (A,B) see table 1.1 (1.5.4)

= 1− P (A)P (B|A) product rule (1.5.5)

= 1− P (A)
[
1− P (B|A)

]
sum rule (1.5.6)

= 1− P (A)− P (A)P (B|A) (1.5.7)

= P (A) + P (A)P (B|A) sum rule (1.5.8)

= P (A) + P (A,B) product rule (1.5.9)

= P (A) + P (B)P (A|B) product rule (1.5.10)

= P (A) + P (B) [1− P (A|B)] sum rule (1.5.11)

= P (A) + P (B)− P (B)P (A|B) (1.5.12)

P (A||B) = P (A) + P (B)− P (B,A) extended sum rule (1.5.13)

In words, the disjoint probability of two events is equal to the sum of their probabilities
minus their joint probability.

If A and B are independent then the probability of A occurring does not depend
on whether B has occurred so P (A|B) = P (A) through the product rule this implies
P (B|A) = P (B) and

P (A,B) = P (A)P (B) independent events (1.5.14)

If two events are mutually exclusive, that is they cannot occur at the same time
(the first flip of a coin cannot be both heads and tails) then P (A,B) = 0 and the
extended sum rule becomes

P (A||B) = P (A) + P (B) mutually exclusive events (1.5.15)

Example: If you roll a die once the probability of getting a 6 or a 5 is 1
6

+ 1
6

= 1
3
.

If you roll a die twice the probability of getting a 6 and then a 5 is
(

1
6

) (
1
6

)
= 1

36
. The
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probability of getting a 6 and a 5 is twice this, 1
18

, because there are two ways of
doing this, a 6 first or a 5 first.

The third case can be calculated in an alternative way. In the first roll, we must
get a 5 or a 6. We have calculated that the probability of this is 1

3
(sum rule). Once

this is done in the second roll we must get whichever number we didn’t get in the first
roll, one number out of 6, probability 1

6
. The probability of these two independent

events happening is then given by the product rule
(

1
3

) (
1
6

)
= 1

18
.

Now say we have a set of observations {AI} that are all mutually exclusive and
together they include all possible outcomes then

1 = P (A1||A2||A3|| . . . |B) + P (A1||A2||A3|| . . .|B) (1.5.16)

= P (A1||A2||A3|| . . . |B) + 0 (1.5.17)

= P (A1|B) + P (A2||A3|| . . . |B) (1.5.18)

= P (A1|B) + P (A2|B) + P (A3|| . . . |B) (1.5.19)

=
∑
i

P (Ai|B) (1.5.20)

This is the origin of the normalization requirement on any probability distribution
function (PDF). Note that I have put a B in as a condition on all the probabilities,
but this would hold without them.

Another important result along these lines is∑
i

P (B|Ai)P (Ai) =
∑
i

P (B,Ai) =
∑
i

P (Ai|B)P (B) = P (B)
∑
i

P (Ai|B) = P (B)

(1.5.21)

with the same requirements on the set {Ai}. This is the origin of what we will later
call marginalization.

Problem 1. We know the probability of a person having red hair is P (R), the
probability of a person having blue eyes is P (B), and that the probability of a red-
headed person having blue eyes is P (B|R).

1. What is the probability that a blue-eyed person will have red hair?

2. What is the probability that a person will have both blue eyes and red hair?

3. What is the probability that a person will have either blue eyes or red hair?
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Problem 2. Say we have developed a new cheaper test for cancer. We test
it on patients that we know have cancer and find that 90% of them get a positive
result. Then we test it on patients that we know don’t have cancer and we find that
90% of them get a negative test result. The test shows only negative or positive, not
undetermined. From previous research, we know that the cancer rate in the general
population is 1 in 10,000.

1. If we use this test in the general population what is the chance of a person with
a positive test of actually having cancer?

2. What is the chance of a random person having cancer and a false test result?
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Chapter 2

Some warm-up problems

There is a large class of problems, classical statistical physics included, for which in-
dividual states are considered equally probable and the question is how many states
out of all possible states have a certain property. The property could be the temper-
ature, pressure, or having a full house in your poker hand and the states could be
the positions of each atom in a gas, the spin state of each atom in a metal, or the
identity of the five cards you are dealt in poker. Here are some very simple problems
that illustrate some of the counting techniques used throughout statistics and in the
process introduce the two most important distributions in statistics: the binomial
and multinomial distributions1.

2.1 Flipping coins & the Binomial Distribution

Let us flip a fair coin 4 times. What is the probability of all 4 being heads? Let’s call
the outcome of each flip being H or T . Since each flip is independent we can use the
product rule

P (H,H,H,H) = P (H)P (H)P (H)P (H) = P (H)4 (2.1.1)

Each flip will have a probability of 0.5 of being heads so the probability is (0.5)4 =
0.0625. Simple enough.

Now let us look at the probability of getting all heads but one

P (one tail) = P ((#1 is T)||(#2 is T)||(#3 is T)||(#4 is T)) (2.1.2)

= P (T,H,H,H) + P (H,T,H,H) + P (H,H, T,H) + P (H,H,H, T )
(2.1.3)

1The binomial is a special case of the multinomial so these could be considered one distribution.

19
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Figure 2.1: The binomial distribution for the number of 6s in ten rolls of a die or one
roll of ten dice. N = 10, k = 0 . . . 10, p = 1/6

where the sum rule has been used. Since each of these probabilities must be equal

P (one tail) = 4P (T,H,H,H) = 4P (T )P (H)3 (2.1.4)

where the product rule has been used.
You can see how this can be extended to any number of tails and heads even if

the coin is not fair. Note that because there are only two possible outcomes P (T ) =
1− P (H) - let’s just call P (T ) p - the probability of getting n tails out of N will be
pn(1 − p)N−n times the number of ways you can draw tails n times out of N flips.
Since we are not concerned with the order of the flips, the number of cases is given
by the binomial coefficient(

N

n

)
≡ N(N − 1)(N − 2) · · · (N − n− 1)

n!
=

N !

n!(N − n)!
(2.1.5)

This is often expressed as ”N choose n”.
So the probability of getting n outcomes of probability p out of N trials is

p(n|N) =

(
N

n

)
pn(1− p)N−n n ≤ N (2.1.6)

which is called the binomial distribution. The case of N = 10 and p = 1/6 is
shown in figure 2.1.
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We can also think of the binomial distribution as the solution to the problem of
”drawing with replacement”. Imagine a bag full of green and blue balls. Each trial
you take one out, record its color, and put it back in the bag. The probability of
getting a green ball in each draw is p = (number of green balls) / (total number
of balls). The chance of getting n green balls in N draws is given by the binomial
distribution.

The Bernoulli distribution is the special case of N = 1

p(n) =

{
p , n = 1

(1− p) , n = 0
(2.1.7)

an almost trivial case, but perhaps the first probability distribution ever written down.
These types of experiments where each trial is independent of the others and there
are two possible outcomes (or perhaps the outcomes are divided into two categories)
are called Bernoulli trials. The binomial distribution is important for calculating
the distribution of any finite sample of observations and comes up very often as we
will see.

Note that the binomial coefficient gets its name because of the binomial expan-
sion

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k (2.1.8)

The mean and variance of the binomial distribution are

〈n〉 = Np (2.1.9)

σ2 = 〈n2〉 − 〈n〉2 = Np(1− p) (2.1.10)

2.2 Rolling Dice & the Multinomial Distribution

Let us look at a more complicated case. A roll of a die has 6 possible outcomes. If
we rolled the die N times and asked what is the probability of getting n 6s, we could
use the binomial distribution because there are only two outcomes to each trail that
count– 6 and not 6.

But if we asked what the probability of getting one 1, two 2s, and two 5s in five
rolls is we will have to work a little harder. By the product rule for independent
trials,

P (1, 2, 2, 5, 5) = p1p2p2p5p5 = (p1)(p2)2(p5)2 (2.2.1)

The order of the rolls is not important so all permutations of rolls must have equal
probability and must be added together. There are n! permutations, or orderings, of
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n things so there are 5! ways of getting one 1, two 2s, and two 5s and they all have
the same probability. But some of the outcomes are the same so we cannot count
them as distinct combinations - you could reorder the p2’s in the above and each
one would be identical. If n2 is the number of 2’s then there are n2! such identical
re-orderings. Likewise there are n5! indistinct re-orderings of the 5s. Adding all the
distinct permutations together gives

P ({1, 2, 2, 5, 5}) =
5!

1!2!2!
(p1)(p2)2(p5)2. (2.2.2)

The brackets {. . . } will indicate a set which has no specified order.
You can see that in general if there are k possible outcomes with probabilities p1,

p2, .... pk (these are all the possible outcomes so
∑

i pi = 1) the probability of each

of these occurring n1, n2, .... nk times in N trials (
∑k

i=1 ni = N) is

P (n1, n2, . . . , nk|N, {pi}) =
N !

n1!n2! . . . nk!
pn1

1 p
n2
2 . . . pnkk (2.2.3)

=
N !∏k
i=1 ni!

k∏
i=1

pnii (2.2.4)

This is called the multinomial distribution. The mean and variance of the distri-
bution are

E[xi] = Npi (2.2.5)

V ar[xi] = Npi(1− pi) (2.2.6)

Problem 3. You have a set of 6 dice that have been altered so that the probability
of rolling a 6 is twice as large as getting any other number. The other numbers have
equal probability. If you roll the set of 6 dice what is the probability of getting two 6s,
one 5?

2.3 Birthday Paradox

This is another widely known problem for which many people go down the wrong
path and get confused. The ”paradox” is that in a relatively small group of people,
there is a surprisingly high probability that two of them will have the same birthday.

Let’s say there are n people at the party. There are 365 choices for the birth-
day of each person (not including leap years) so there are 365n combinations of n
birthdays. We will assume these are all equally likely. Instead of finding the number
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Figure 2.2: Probability of more than one person having the same birthday.

of combinations with repeat birthdays let’s find the number of combinations with
no repeats. There are 365 choices for the first person, then 364 choices for the sec-
ond, etc. until you get to the last person so the number of cases with no repeats is
365× 364× ...× (365− n+ 1) = 365!/(365− n)!. So the total probability is

P (at least two the same) = 1− P (no two the same) = 1− 365!

365n(365− n)!
. (2.3.1)

If you try to calculate this number directly with a computer you will find that
some of these numbers are too big to store. The Python scipy factorial function
(scipy.special.factorial) will give infinity for 365! for example. But the quotient of
these numbers is something reasonable. This problem often comes up in this kind
of problem. We will need an approximation to complete the calculation. Taking
the log of a quotient often helps you cancel some things out. And taking Stirling’s
approximation (lnN ! ' N lnN −N) often helps simplify factorials.

ln

(
N !

Nn(N − n)!

)
= lnN !− ln(N − n)!− n lnN (2.3.2)

= N lnN −N − (N − n) ln(N − n)− (N − n)− n lnN (2.3.3)

= (N − n) lnN − (N − n) ln(N − n)− n (2.3.4)

= (N − n) ln

(
N

(N − n)

)
− n (2.3.5)

We can then take the exponential of this to get

P (at least two the same) ' 1−
(

N

N − n

)N−n
e−n (2.3.6)
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This is plotted in figure 2.2. For a group of 23 people, there is a 50% chance that at
least 2 of them will have the same birthday.

The multinomial distribution can be used to find the probability of getting exactly
so many birthdays on specific days. To find the probability of getting some class of
combinations that satisfy a criterion (for example the probability that three birthdays
are on the same day or that there are two days with two people’s birthdays on each)
you can find the probability for one example of it and then multiply it by the number
of ways that the criterion can be satisfied.

Problem 4. What is the probability of at least 2 people out of n having the same
birthday taking leap days into account?

2.4 Poker

A deck of poker cards consists of 52 cards. There are four suits - diamonds (♦),
hearts (♥), spades (♠) and clubs (♣). In each suit, there are an ordered sequence of
13 cards (we will take the ace to be greater than the king). A poker hand consists
of 5 cards. In ”five-card stud” you are dealt five cards and you are not allowed to
exchange any. This version of poker is rarely played because it relies too much on
chance and not skill, but we will consider it here because it is simple.

What is the probability of getting a flush (five cards of the same suit) in five-card
stud? You might at first think this is just like the dice rolling problem and say it is
4(1/4)5 ' 0.0039, but this would be wrong because the draws are not independent.
If your first card is a ♣ there will be fewer ♣ in the deck and the deck will be smaller
so the probability of getting a club the second time will be (13− 1)/(52− 1).

P (flush) =
4

4

12

51

11

50

10

49

9

48
= 0.00198 . . . (2.4.1)

Significantly less probable than we would get if there were replacement.
We can also calculate the probability of getting 5 diamonds by repeated applica-

tions of the product rule

P (♦1,♦2,♦3,♦4,♦5) = P (♦1)P (♦2,♦3,♦4,♦5|♦1) (2.4.2)

= P (♦1)P (♦2|♦1)P (♦3,♦4,♦5|♦1,♦2) (2.4.3)

= P (♦1)P (♦2|♦1)P (♦3|♦1,♦2)P (♦4,♦5|♦1,♦2,♦3) (2.4.4)

= P (♦1)P (♦2|♦1)P (♦3|♦1,♦2)P (♦4|♦1,♦2,♦3) (2.4.5)

× P (♦5|♦1,♦2,♦3,♦4) (2.4.6)

Unlike in the case of rolling dice, the probabilities are conditional. This expresses
the fact that each draw is not independent. The probability of getting any of the
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four flushes is then found with the extended sum rule for mutually exclusive events
(equation 1.5.15).

What is the probability of a straight? This is getting five sequential cards, for
example, 8, 9, 10, J,Q. The probability of drawing them all in a row must be the
same as the probability of drawing them in any other order so we can calculate the
probability of drawing them in order and then multiply by the number of permuta-
tions. First, we need to draw a card of 10 or lower or there won’t be enough cards
of higher value. That probability is 4× 9/52 (remember there are no 1 cards). Then
there are 4 cards of one higher value out of 51 remaining cards, etc. Then for each
case, there are 5! permutations.

P (straight) = 5!
36

52

4

51

4

50

4

49

4

48
= 0.003546 . . . (2.4.7)

Somewhat more likely than a flush which is why this hand is worth less. If we
count the ace-low straight this is 0.00394.... This includes straight-flushes and royal-
straight-flushes which are higher hands.

What is the probability of a full house? A full house is two of a kind (two 10s or
two kings for example) and three of another kind (three aces or three twos).

Let’s do this one a little differently. Let’s count the total number of distinct five-
card hands and then count the number of distinct full houses. The probability will
be the ratio of these since every hand is equally probable. Let’s make this a little
more abstract. There are N distinct objects (cards) we have N ways of choosing the
first one. There are N − 1 objects left when we pick the next one, etc. So there are
N · (N −1)... · (N −n+ 1) distinct ways of choosing n objects out of N . This can also
be written N !/(N − n)!. This counts combinations of objects in different orders as
distinct (123 is different than 213). If we wish to count different permutations of the
same objects as the same set then we need to divide by the number of permutations
of n objects which is n!. Again we get the binomial coefficient for the number of
these distinct sets (

N

n

)
≡ N !

n!(N − n)!
(2.4.8)

Let’s use it on our problem.
There are

(
52
5

)
distinct five card hands. There are four cards of each type, one for

each suit, so there are 13 ·
(

4
2

)
distinct pairs of cards of the same kind. The three-

of-a-kind needs to be different than the pair so there are 12 ·
(

4
3

)
of them. So the

probability of a full house is

P (full house) =

(
4
2

)
·
(

4
3

)
· 13 · 12(

52
5

) = 0.00144 . . . (2.4.9)
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Very similar logic will lead you to the probabilities of getting two pairs or four of a
kind.

Calculating the probabilities for poker may (or may not) seem frivolous, but the
calculation of odds for gambling actually played a very important role in the devel-
opment of statistics. Pascal and Fermat had a famous correspondence in the 17th
century on games of chance in which they developed the foundations of probability
theory.

drawing without replacement, the hypergeometric distribution

Related to poker hands is the case where there are a finite number of objects of two
types which are selected at random and not replaced before selecting the next. In
this case, each trial will not be independent of the ones before it (or the ones after
it). We have a bag containing N balls with R red ones and N − R blue ones. The
probability of getting r red ones out of n tries without replacement is

p(r|n,N,R) =

(
R
r

)(
N−R
n−r

)(
N
n

) (2.4.10)

Note that p(r|1, N,R) = R/N and p(r|N,N,R) = δKRr as they should (δK is the
Kronecker delta). The probability of a flush in 5 card stud would be 4× p(5|5, 52, 13)
and in 7 card stud 4× [p(5|7, 52, 13) + p(6|7, 52, 13) + p(7|7, 52, 13)].

Problem 5. Monty Hall Problem This is a classic problem based on an old
American TV game show. It was before my time, but apparently, the host of the show
was named Monty Hall. There are variations of this game show on Italian TV. In
this game, the contestant can choose between three doors. He knows that behind one
of the doors is something nice like a new car and behind the other two are things that
are not so nice like a chicken or an old shoe. The contestant chooses one door but
does not open it. Monty then eliminates one of the doors that were not chosen and
shows that it has the shoe or chicken. The contestant then has a chance to change
his choice or remain with his first choice.

What are the probabilities of getting the prize for each choice?

1. Stay with the first choice :

2. Change doors :

Problem 6. You have a bag of 100 blue and yellow balls. 60 of them are blue and
40 of them are yellow.
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N ! # of permutations (orderings) of N objects
N !

(N−n)!
# of ordered combinations of n out of N objects, no replacement.(

N
n

)
≡ N !

n!(N−n)!
# of unordered combinations of n out of N objects, no replacement.

Called ”N choose n” or the binomial factor.
Nn # of ordered combinations with replacement,

i.e. objects can be repeated but there are only N types.(
n+N−1

n

)
# of unordered combinations of n objects out of N possibilities

with replacement.

1. What is the probability of drawing 5 yellow balls in a row out of the bag without
looking?

2. What is the probability of 6 draws out of 10 being yellow?

Problem 7. There are f flavors of gelato. You get a bowl of n scoops. Show that
there are (

n+ f − 1

n

)
(2.4.11)

combinations of flavors you could order.
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Chapter 3

Probability distributions

In this section, we will look at some frequently used probability distributions and
probability distribution functions (PDFs) and what they are meant to represent.
Many, many named distributions have been used to model many different things. I
will discuss only a few of the most widely applicable distributions that come up very
often in statistics. Most other distributions can be derived from these, are limiting
cases of these, or can be derived using the kind of arguments that I will use to
derive them. In practical cases, one might need to derive a statistical model that fits
the question or the physical theory might dictate a probability distribution for an
observable quantity that is not one of the classical distributions. For this reason, a
good scientist must have a good understanding of how the classical distributions are
derived and what they represent.

3.1 properties of a probability distribution func-

tion (PDF)

So far we have considered the probabilities of discrete events - the probability of
getting a 5 or 6. If we consider a continuous variable x we can define the probability
of being within an infinitesimal range x to x + dx as p(x)dx. This probability must
be positive.

p(x) ≥ 0 (3.1.1)

There are an infinite number of these bins across the range of x. A measurement of
x will be in only one of them so we can apply the sum rule for mutually exclusive
events (1.5.16) to these bins. In the infinitesimal limit, the sum becomes an integral∫ ∞

−∞
dx p(x) = 1 (3.1.2)

29
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All valid PDFs must satisfy these two requirements. Sometimes people call the PDF
the probability mass function. They mean the same thing.

In the frequentist tradition, x is called a random variable. A strict Bayesian
might avoid using the term. He/she might say that there is an event where the value
x is observed and we can attach a probability to this event given our prior knowledge
and statistical model. There is no ”randomness” about it. I will take a practical
approach and ignore the linguistic distinctions as most scientists do.

3.2 mean, median, mode ...

Before we get started with the specific distributions, it will be useful to define some
terms and quantities that are used to describe the properties of distributions.

• cumulative distribution function - the function of x describing the proba-
bility of the measured value being < x:

F (x) =

{ ∑
x′<x p(x

′) discrete x∫ x
−∞ dx

′p(x′) continuous x
(3.2.1)

By definition F (−∞) = 0 and F (+∞) = 1. The cumulative distribution for a
discrete distribution is defined in the obvious way.

• Quantile function is the inverse of the cumulative distribution function

Q(u) = F−1(u) 0 ≤ u ≤ 1 (3.2.2)

There is a probability u that the random variable will be x < Q(u).

• expectation value - The ”average” of any function of the random variable.
This is denote by E[. . . ] or 〈. . . 〉. The expectation value of f(x) is

E [f(x)] = 〈f(x)〉 =

{ ∑
x p(x) f(x)∫∞
−∞ dx p(x) f(x)

(3.2.3)

• mode - A point where a distribution has a maximum. Unimodal distributions
have one mode and multimodal distributions have more than one.

• median - The point xm = Q(1/2), or alternatively F (xm) = 1/2. The prob-
ability that x will be less than the median is equal to the probability that it
will be more than the median. In a sample or data set the median is the data
point that has equal numbers of data points larger than and less than it. For a
set with an even number of points, the arithmetic mean between the two points
closest to having this property is often used.
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• mean - The mean is the expectation value of the random variable itself, E[x].
This will often be represented by µ.

• moments - The nth moment of a distribution is E[xn].

• central moments - The nth central moment is E[(x− µ)n]

• variance - The variance is the second central moment E[(x− µ)2]. It is often
denoted by V ar[x] or σ2. This is a measure of the width of the distribution.
Note that

V ar[x] = E
[
(x− µ)2

]
= E

[
x2 − 2xµ+ µ2

]
(3.2.4)

= E
[
x2
]
− 2E [x]µ+ µ2 (3.2.5)

= E
[
x2
]
− µ2. (3.2.6)

• standard deviation - the square root of the variance. It is often denoted by
σ. An equivalent measure of the width of the distribution in the same units as
the random variable.

• mean deviation E[|x − µ|]. This is an alternative measure of the width of a
distribution. It is often more robustly estimated from a small sample especially
when the distribution has large ”tails” (much of the probability lies far away
from the mode or beyond ∼ σ from it.).

• skewness - E[(x−µ)3]/σ3. This is a unitless measure of the asymmetry of the
distribution.

• kurtosis - E[(x − µ)4]/σ4. This is a measure of the relative importance of
outliers (points differing from the mean by larger than several σ). If the kurtosis
is larger than 1 the ”tails” of the distribution are more important than for a
Gaussian. This also reflects the ”boxyness” of the distribution.

• standardized variable - It is often useful to rescale a random variable with
the standard deviation and mean of its distribution

X =
(x− µ)

σ
. (3.2.7)

This variable will always have a mean of 0 and a variance of 1.

Although the moments of a distribution are often used to describe a distribution,
and two distributions with the same moments must indeed be the same distribution,
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a distribution can have no moments or only some. An example of this that is of
particular interest in physics and astronomy is the Cauchy or Lorentzian distribution:

p(x) =
γ

π [(x− xo)2 + γ2]
Cauchy-Lorentz distribution. (3.2.8)

Among other things, this is the natural profile of a spectral line because of the finite
lifetime of the excited state. It is also the distribution of the ratio of two normally
distributed variables with zero means. Also if you have a point on a plane and you
shoot rays out from it in random directions their intercepts with any line not going
through the point will have this distribution (Try proving this). It is also the n = 1
case of the student-t distribution (section 3.17).

This distribution is normalized and it is symmetric around its mode at x = xo, but
the integrals that define all the moments, including the mean, are divergent. Later
we will ask what would happen if we tried to estimate the mean or variance using a
sample drawn from this distribution.

3.3 changing of variables

Say we have a variable x and the probability of it being between x and x + dx
is p(x)dx. Now say we have another variable y that is related to x by x = f(y)
where f(y) is single-valued and differentiable. Then for a change dy, x changes by

dx =
[
d
dy
f(y)

]
dy. The probability of being within this range should not depend on

which variable is used to measure the range so it must be that

px(x)dx = px (f(y))

∣∣∣∣dfdy
∣∣∣∣ dy = py(y)dy (3.3.1)

In this way, the pdf for one variable can be transformed into the pdf for another. For
example if the PDF of x is px(x), the PDF of y = x2 is py(y) = 1

2
px(
√
y)/
√
y.

This is just the same as a change of variables in an integral of course. For a
multivariate pdf, variables can be changed in the usual way

px(x1, x2, . . . )dx1dx2 · · · = px(y1, y2, . . . )

∣∣∣∣∂x∂y
∣∣∣∣ dy1dy2 . . . (3.3.2)

where
∣∣∣∂x∂y ∣∣∣ is the determinant of the Jacobian matrix relating the volume element in

one coordinate system to another.
For example, if the probability of a galaxy existing at a point in three-dimensional

space is p(x, y, z)dxdydz then the probability in spherical coordinates is

p (x = r sin(θ) cos(φ), y = r sin(θ) cos(φ), z = r cos(θ)) r2 sin(θ)drdθdφ. (3.3.3)
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3.4 marginalization and the sum of random vari-

ables

If we have the joint probability distribution p(x, y) we can find the marginal distri-
bution p(x) by integrating over y because∫ ∞

−∞
dy p(x, y) =

∫ ∞
−∞

dy p(x)p(y|x) = p(x)

∫ ∞
−∞

dy p(y|x) = p(x). (3.4.1)

We can find the distribution of the sum of two variables x and y in the following
way. Let us define s = x+ y then

p(s) =

∫ ∞
−∞

dx

∫ ∞
−∞

dy p(x, y, s) (3.4.2)

=

∫ ∞
−∞

dx

∫ ∞
−∞

dy p(x, y) p(s|x, y) (3.4.3)

=

∫ ∞
−∞

dx

∫ ∞
−∞

dy p(x) p(y|x) p(s|x, y) (3.4.4)

=

∫ ∞
−∞

dx

∫ ∞
−∞

dy p(x) p(y|x) δ(x+ y − s) (3.4.5)

=

∫ ∞
−∞

dx px(x) py(s− x|x). (3.4.6)

3.5 moment generating function

The moment generating function (MGF) of a distribution is defined in the discrete
and continuous cases as

mx(t) = 〈etx〉 =

{ ∑
x e

txp(x)∫ +∞
−∞ dx etxp(x)

(3.5.1)

From this, we can easily see that the moments of a distribution can be calculated by
taking the derivatives of the MGF

dnmx(t)

dtn

∣∣∣∣
t=0

= 〈xn〉 (3.5.2)

This can be very useful for cases where the MGF can be found analytically. With a
change in sign of t, this is the same thing as the Laplace transform.
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For example, the moment generating function for the binomial distribution is

mx(t) =
∞∑
n=0

etn
(
N

n

)
pn(1− p)N−n (3.5.3)

=
∞∑
n=0

(
N

n

)
(etp)n(1− p)N−n (3.5.4)

=
(
etp+ 1− p

)N
(3.5.5)

3.6 characteristic function

The characteristic function is essentially the same thing as the moment generating
function only it is the Fourier transform of the PDF instead of the Laplace transform

φx(t) = 〈eitx〉 =

{ ∑
x e

itxp(x)∫ +∞
−∞ dx eitxp(x)

(3.6.1)

The only difference is the i.

The characteristic function has the following properties under transformations of
the random variable

φz(t) = φx(t/n) z = x/n
φz(t) = e−itµ/σφx(t/σ) z = x−µ

σ

φz(t) = φx(t)φy(t) z = x+ y
(3.6.2)

where x and y are independently distributed. They are readily derived and recogniz-
able as properties of the Fourier transform. The last one comes from the convolution
theorem.

3.7 Poisson distribution

Let us consider events that are equally probable to occur at any time. The probability
of an event happening within an infinitesimal amount of time between t and t+ dt is
a constant rdt where r is the rate. We want to know the probability of N of these
events happening within a finite range of time.

First let us find the probability of no events happening within a finite range, to to
t + dt. Let’s call it p(0|to, t + dt). The probability that no event happens between t
and t+ dt is 1− rdt. We can express the joint probability of no events happening in
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Figure 3.1: The Poisson distribution for several rates ν.



36 CHAPTER 3. PROBABILITY DISTRIBUTIONS

the range to to t and no events happening within t to t + dt using the product rule
for statistically independent events

p(0|to, t+ dt) = p(0|to, t) [1− rdt] (3.7.1)

Rearranging this we can obtain the differential equation

p(0|to, t+ dt)− p(0|to, t)
dt

=
d

dt
p(0|to, t) = −p(0|to, t)r (3.7.2)

The solution to this is p(0|t0, t) = Ae−rt. We can find the normalization by requiring
that p(0|to, to) = 1, there will always be no events in a range of zero length. The
results is,

p(0|to, t) = e−r(t−to). (3.7.3)

Now for a finite number of events. The probability of n events occurring at ordered
times t1 . . . tn all less than t (which will also be tn+1 in this notation) can also be found
by the product rule:

p(0 < t1 < t2 < · · · < tn < t) = p(0|0, t1)rdt1Θ(t1 < t2)× p(0|t1, t2)rdt2Θ(t2 < t3)

· · · × p(0|tn, t)dtnΘ(tn < t) (3.7.4)

= rne−rt
n∏
i=1

dtiΘ(ti < ti+1) (3.7.5)

where

Θ(x < y) =

{
1 , x ≤ y
0 , x > y

(3.7.6)

Using the sum rule we know that the probability of n events occurring is the sum of
the probabilities for all possible values for the event times.

p(n|r, t) =
∏
i

∫ t

0

dti p(0 < t1 < t2 < · · · < tn < t) (3.7.7)

= rne−rt
∫ t

0

dtn· · ·
∫ t3

0

dt2

∫ t2

0

dt1 (3.7.8)

= rne−rt
∫ t

0

dtn· · ·
∫ t3

0

dt2t2 (3.7.9)

= rne−rt
∫ t

0

dtn· · ·
∫ t4

0

dt3
t23
2

(3.7.10)

=
(rt)n

n!
e−rt (3.7.11)

=
(ν)n

n!
e−ν Poisson Distribution (3.7.12)
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where ν ≡ rt. This distribution has the following mean and variance

E [n] = ν (3.7.13)

V ar[n] = ν (3.7.14)

The standard example of something that is Poisson distributed is the number of
radioactive decays within a fixed interval of time. If supernovae go off randomly the

probability of seeing one during an hour of observations would be r(1 hour)e−r(1 hour)

where r would be the total rate of supernovae in the monitored galaxies. Another
example is the counts of something, say stars or galaxies, within a volume, or cell,
that are uniformly distributed in space. In this case, r is the average number density
of objects and t is the volume of the cell. It does not matter what the shape of the
cell is. A common question is whether objects are uniformly distributed or clustered.
This can be determined by comparing the number counts in cells to the predictions
of a Poisson distribution. We will get back to this question later.

As a limit of the binomial distribution

Imagine a cube of space with volume, V , and a smaller cube within it with volume,
v. Now imagine there are N uniformly distributed galaxies or stars in this volume.
The number of galaxies in v will be n. n would be binomially distributed with the
probability of any particular galaxy being in v equal to p = v

V
.

Now let’s take the limit of N → ∞ and p → 0 (or V → ∞) while keeping the
average density constant ν = N/V = Np. Using Stirling’s approximation one can
show that N !

(N−n)!
' Nn to lowest order.(

N

n

)
pn(1− p)N−n =

(
N

n

)( ν
N

)n (
1− ν

N

)N−n
(3.7.15)

=
N !

n!(N − n)!

( ν
N

)n (
1− ν

N

)N−n
(3.7.16)

=
Nn

n!

( ν
N

)n (
1− ν

N

)N−n
using

N !

(N − n)!
' Nn

(3.7.17)

'ν
n

n!
e−ν (3.7.18)

where I have used limn→∞
(
1 + x

n

)n
= ex. So the Poisson distribution is the binomial

distribution in this limit.

A sometimes useful limit of the Poisson distribution when ν � 1 is to treat n as
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continuous and replace n! with the gamma function

p(n|ν) ' νn

Γ(x+ 1)
e−ν ν � 1 (3.7.19)

Problem 8. Consider a random uniform field of stars (or gas of molecules) with
number density η. Using the Poisson distribution find:

1. Find the distribution of the distances to the nearest star (molecule).

2. What is the average distance to the nearest star (molecule)?

Problem 9. Consider a particle traveling through a gas of atoms of density ρ = mη
at velocity v. If the cross sections for an interaction between the particle and an atom
is σ what is the distribution of the distances the particle travels before it interacts with
one of the atoms? What is the mean free path?

Problem 10. The surface brightness of distant galaxies appears smooth and
continuous despite it being the sum of the contributions many discrete stars. The finite
resolution of the telescope causes this effect. If the stellar density is η∗, distribution
of stellar brightnesses is f(b) and the blurring of the telescope is approximated as
a convolution with a point spread function W (|θθθ − θθθ′|), what would be the standard
deviation of the surface brightness?

3.8 Gaussian or normal

The Gaussian and the normal distribution are two names for the same thing. It is a
very widely used probability distribution. The usual justification for this is the central
limit theorem although it is also justified as the maximum entropy distribution for a
fixed variance. We will get to these justifications later.

The pdf for the Gaussian distribution is

p(x|σ, µ) =
1√
2πσ

exp

{
−(x− µ)2

2σ2

}
≡ G (x |µ, σ ) (3.8.1)

The mean is µ and the variance is σ2.
A note on notations: To signify that a variable x is normally distributed with a

mean of µ and a standard deviation of σ one can write x ∼ N (µ, σ). Sometimes, in an
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abuse of notation, N (µ, σ) can stand for the actual pdf (3.8.1). I will use G (x |µ, σ )
to signify this Gaussian function.

The cumulative distribution function is

F (x) =
1

2
+

1

2
erf

(
x− µ√

2σ

)
(3.8.2)

with the error function defined as

erf(z) ≡ 2√
π

∫ z

0

e−u
2

du (3.8.3)

Note that erf(−z) = −erf(z) and erf(∞) = 1.
The moment generating function is

mx−µ(t) =
1√
2πσ

∫ ∞
−∞

dx etxe−
x2

2σ2 (3.8.4)

=
1√
2πσ

∫ ∞
−∞

dx exp

[
−
(

x√
2σ
− tσ√

2

)2

+
t2σ2

2

]
(3.8.5)

= e
1
2
σ2t2 (3.8.6)

The moments are

µn =
1√
2πσ

∫ ∞
−∞

dx xne−
x2

2σ2 =

{
σn(n− 1)!! n even

0 n odd
(3.8.7)

where !! is the double factorial,

!!n = n · (n− 2) · (n− 4) . . . 1 (3.8.8)

The probability of x being within nσ of the mean is

P (µ− nσ ≤ x ≤ µ+ nσ) = 1− F (µ− nσ)− [1− F (µ+ nσ)] (3.8.9)

=
1

2

[
erf

(
n√
2

)
− erf

(
− n√

2

)]
(3.8.10)

= erf

(
n√
2

)
. (3.8.11)

Some specific values for this are

P (−σ ≤ x− µ ≤ σ) = 0.683 (3.8.12)

P (−2σ ≤ x− µ ≤ 2σ) = 0.954 (3.8.13)

P (−3σ ≤ x− µ ≤ 3σ) = 0.997 (3.8.14)

P (−4σ ≤ x− µ ≤ 4σ) = 0.999937 (3.8.15)
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Problem 11. If x ∼ N (0, 1) what is the distribution of y = 1/x2?

Problem 12. Show that the ratio of two normally distributed variables with the
same mean is Cauchy distributed.

3.9 Chebyshev inequality

There is an important and interesting bound on the amount of probability that lies
within k times the variance of the mean that does not depend on normality or any
other strong assumption about the distribution. If µ and σ are the mean and variance
of the distribution the Chebyshev inequality is

P (|X − µ| ≥ kσ) ≤ 1

k2
(3.9.1)

where

P (|X − µ| ≥ kσ) = 1−
∫ µ+kσ

µ−kσ
dx p(x) (3.9.2)

The only requirement on the distribution is that µ and σ exist. k does not need to
be an integer.

We can compare this limit to the values for the normal distribution (3.8.12)–
(3.8.15)

P (−σ ≤ x− µ ≤ σ) ≥ 0 (3.9.3)

P (−2σ ≤ x− µ ≤ 2σ) ≥ 0.75 (3.9.4)

P (−3σ ≤ x− µ ≤ 3σ) ≥ 0.888 . . . (3.9.5)

P (−4σ ≤ x− µ ≤ 4σ) ≥ 0.96 (3.9.6)

The proof is straightforward,

P (|X − µ| ≥ kσ) =

∫ ∞
−∞

dx p(x)Θ(|x− µ| ≥ kσ) (3.9.7)

≤
∫ ∞
−∞

dx p(x)

(
(x− µ)

kσ

)2 (
(x− µ)

kσ

)2

≥ Θ(|x− µ| ≥ kσ) ∀x

(3.9.8)

≤ 1

k2σ2

∫ ∞
−∞

dx p(x)(x− µ)2 (3.9.9)

=
1

k2
(3.9.10)
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This clearly holds for discrete distributions as well.

The Chebyshev inequality allows you to put strict limits on the probability of
outliers if the variance is known and implies a more general meaning for the variance
of a distribution. It is often used in formal proofs and is a special case of Markov’s
inequality which is P (|X| > a) ≤ E[|X|]/a where a is any positive real number.

3.10 central limit theorem

The Gaussian distribution plays an important role in statistics. The distributions of
a surprisingly large number of phenomena are observed to be well represented by a
Gaussian distribution. The traditional explanation for this is the central limit theo-
rem. It holds that the sum of a large number of identically distributed independent
random variables will be close to Gaussian distributed even if they are not individ-
ually Gaussian distributed. If the noise in a measurement can be considered the
sum of many small unknown contributions then you would expect it to be Gaussian
distributed.

Let’s say we have N identically distributed variables xi. We can define a set of
standardized variables

zi =
xi − µ
σ

. (3.10.1)

With this scaling it is clear that 〈zi〉 = 0 and 〈z2
i 〉 = 1. The sum of these will be

Z =
∑

i zi. 〈Z〉 = 0 and 〈Z2〉 =
∑

ij 〈zizj〉 =
∑

i 〈z2
i 〉 = N because each one is

uncorrelated. So the standardized variable for the sum is

Y =
1√
N
Z =

1√
N

∑
i

zi. (3.10.2)

This will again have mean zero and variance 1. Now let’s find the moment generating
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function for Y ,

mY (t) =〈exp (tY )〉 =

〈
exp

(
t√
N

∑
i

zi

)〉
=

〈
exp

(
t√
N
zi

)〉N
(3.10.3)

=

〈
1 +

t√
N
zi +

t2

N

z2
i

2
+

t3

N3/2

z3
i

3!
+ . . .

〉N
(3.10.4)

=

[
1 +

t√
N
〈zi〉+

t2

N

〈z2
i 〉
2

+
t3

N3/2

〈z3
i 〉

3!
+ . . .

]N
(3.10.5)

=

[
1 +

t2

2N
+

t3

N3/2

〈z3
i 〉

3!
+ . . .

]N
(3.10.6)

' lim
N→∞

[
1 +

t2

2N

]N
(3.10.7)

= e
t2

2 (3.10.8)

This is the moment generating function for a Gaussian as we saw earlier.

It is important to note that this theorem is strictly true only for a sum of an infinite
number of variables with the same variance. You might not expect this to apply to
our concept of noise coming from many small random contributions that are not all
the same. If the variance of one of the variables were much larger than the others
it would dominate the distribution of the sum for example. However, the Gaussian
distribution is widely and successfully used. We will later see another justification for
it based on an entropy argument. It can also be shown that many distributions tend
toward Gaussian in some limit that is commonly encountered.

The distribution of the sum of independent random variables

Let’s do a practical experiment to see how quickly the sum of variables will converge
to a Gaussian distribution as the number of variables increases. To do this we will
need the pdf of the sum of random variables. There is a way of doing this that is of
general use. Let us take the sum of n random numbers to be S =

∑
i xi. The pdf

of variable xi is pi(xi), each one may be different. We can marginalize over all the
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variables and use a Dirac delta function to force the sum of them to be S

p(S) =

∫ ∞
−∞

dx1 . . .

∫ ∞
−∞

dxn p(S, x1 . . . xn) (3.10.9)

=

∫ ∞
−∞

dx1 . . .

∫ ∞
−∞

dxn p(S|x1 . . . xn)p(x1 . . . xn) (3.10.10)

=

∫ ∞
−∞

dx1 . . .

∫ ∞
−∞

dxn δ(S −
∑
i

xi) p1(x1) . . . pn(xn) (3.10.11)

=

∫ ∞
−∞

dx1 . . .

∫ ∞
−∞

dxn

∫ ∞
−∞

dk

(2π)
exp

[
−ik(S −

∑
i

xi)

]
p1(x1) . . . pn(xn)

(3.10.12)

=

∫ ∞
−∞

dk

(2π)
e−ikS

∏
i

∫ ∞
−∞

dxie
+ikxipi(xi) (3.10.13)

=

∫ ∞
−∞

dk

(2π)
e−ikS

∏
i

p̃i(k) (3.10.14)

=

∫ ∞
−∞

dk

(2π)
e−ikS p̃S(k) (3.10.15)

where p̃i(k) is the Fourier transform of pi(xi). This means that
∏

i p̃i(k) is the Fourier
transform of the pdf of S. As we already know, the Fourier transform of a probability
distribution is called its characteristic function. This is true for discrete as well as
continuous random variables. In the special case where the distributions are all the
same, this will be [p̃(k)]n. Note that in Fourier space the normalization requirement
is p̃(0) = 1.

Let’s look at a uniform distribution between −L/2 and L/2. The characteristic
function (Fourier transform) of this distribution is

p̃(k) =
1

L

∫ L/2

−L/2
dx e+ikx =

2

Lk
sin

(
kL

2

)
= sinc

(
kL

2

)
. (3.10.16)

So the pdf for the sum of n uniformly distributed variables, each over a range L/n is

pn(S) =

∫ ∞
−∞

dk

(2π)
e−ikSsincn

(
kL

2n

)
. (3.10.17)

Figure 3.2 shows this case for some small values of n with L = 2. In this case, each
xi has a maximum of 1 so S has a maximum of n. For this reason, the tails of the
distribution are cut off relative to the Gaussian which extends to infinity. Even so,
you can see that the distribution becomes remarkably Gaussian even for n = 5 or 6.
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Figure 3.2: Probability distribution for the sum of n random variables that are uni-
formly distributed between -1 and 1. The normalizations have been changed so that
their maximum is 0.5 in all cases. The dotted curves are for Gaussians with the same
variance. You can see that the distribution converges to Gaussian remarkably quickly
even for a very non-Gaussian initial distribution.
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This exercise can be done numerically for any distribution. It is not necessary to
have an analytic expression for the Fourier transform of pi(xi). Any numerical DFT
(Discrete Fourier Transformation) and inverse DFT will do the same trick although
care must be taken with the normalization convention that your software uses and a
phase factor that comes in when n is even.

This technique for finding the distribution of the sum of variables can be used to
study things like random walks and diffusion. The same idea is also used to derive
halo mass functions in cosmology. In general, the characteristic function contains
all the information contained in the pdf. It is often used in proofs and in calculating
certain properties of a distribution.

Problem 13. If x1 and x2 are independent Poisson distributed variables what is
the distribution of S = x1 +x2? What is its mean and variance? Justify your results.

3.11 connection between Poisson and Gaussian dis-

tributions

You can see from the figure 3.1 of the Poisson distribution that as the average gets
larger the Poisson pdf gets more symmetric and looks more Gaussian. Let’s make
this connection more precise. The Poisson distribution is

p(n|ν) =
(ν)n

n!
e−ν (3.11.1)

Let’s make the substitution n = ν(1 + δ) which also means δ = (n− ν)/ν. Let’s take
the limit where ν � 1 while δ � 1 which also means n � 1. Let’s again use the
Stirling’s approximation

n! ∼
√

2πne−nnn (3.11.2)

This is a more accurate form of the approximation than was used before.

Making this substitution we get the probability

p(n) =
νν(1+δ)e−ν

√
2πe−ν(1+δ) [ν(1 + δ)]ν(1+δ)+1/2

(3.11.3)

=
eνδ(1 + δ)−ν(1+δ)−1/2

√
2πν

(3.11.4)
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Let’s look at the lowest-order terms of the log of the numerator

ln
[
(1 + δ)−ν(1+δ)−1/2

]
= −(ν(1 + δ) + 1/2) ln(1 + δ) (3.11.5)

= − (ν + νδ + 1/2)

(
δ − δ2

2
+ . . .

)
ν � 1� δ (3.11.6)

' − (ν + νδ)

(
δ − δ2

2
+ . . .

)
(3.11.7)

' −νδ − νδ2

2
+ . . . (3.11.8)

Putting this back into the above

p(δ) = p(n) (3.11.9)

'
√

ν

2π
e−

νδ2

2 . (3.11.10)

So if ν is large the excursion from the mean, δ, is Gaussian distributed with a
variance of 1/ν. In practice this can be a good enough approximation for moderate
values of ν, say greater than 20. The photon noise or shot noise in astronomical
images is Poisson distributed, but if the photon count is high it is essentially Gaussian
distributed.

3.12 lognormal

The lognormal distribution is simply the distribution where the log of the variable is
normally distributed instead of the variable itself. This distribution is of particular
interest in astronomy because photometric errors are often taken to be Gaussian
in magnitudes which is 2.5 times the log of the flux so the flux will be lognormally
distributed. Since the inverse log of a real number cannot be negative the distribution
is bounded from below by 0. The distribution is also used to model the distribution
of matter in many contexts. Another interpretation is that while the Gaussian is the
right distribution for a sum of many random variables, the lognormal is the right one
for a product of many random variables.

The pdf comes from just changing variables from the Gaussian

p(y)dy =

{
1√
2πσ

exp
{
− (ln(y)−µ)2

2σ2

}
dy
y

, y > 0

0 , y ≤ 0
(3.12.1)
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Some of its properties are

E[y] = exp(µ+
σ2

2
) (3.12.2)

median[y] = exp(µ) (3.12.3)

mode[y] = exp(µ− σ2) (3.12.4)

V ar[y] = [exp(σ2)− 1] exp(2µ+ σ2) (3.12.5)

If µ = 0 and σ � 1 the distribution is approximately Gaussian with a mean of 1
and a variance of σ2. So if we take y = 1+δ and µ = 0 we have a model for fractional
density fluctuations, δ, that will always be positive, will have a median of 0, and will
tend to Gaussian when the variance is small. This is, for example, a good model for
the Lyman-α absorption in quasar spectra. A multivariable version of this is possible
by changing variables from the multivariate Gaussian distribution (section ??). This
is sometimes also used as a model for density fluctuations in the Universe.

Problem 14. Find the cumulative distribution function for the lognormal distri-
bution in terms of the error function, erf().

3.13 Power law distribution

In astronomy, it is common to model the distribution of many things (star masses,
galaxy luminosities, planet masses, temperatures, densities of clouds, etc.) as a power
law. This distribution is also known as a Pareto distribution. The integral of a
power law diverges either as x→ 0 or as x→∞ so some limits need to be fixed for
the distribution to make sense. The normalized PDF is

p(x|xmin, xmax, α) = xα ×


0 , x < xmin

(α + 1)
[
xα+1

max − xα+1
min

]−1
, xmin < x < xmax, α 6= −1

ln
(
xmax

xmin

)−1

, xmin < x < xmax, α = −1

0 , x > xmax

(3.13.1)
The cumulative distribution is easily worked out

F (x|xmin, xmax, α) =



0 , x < xmin

[xα+1−xα+1
min ]

[xα+1
max−xα+1

min ]
, xmin < x < xmax, α 6= −1

ln
(

x
xmin

)
ln
(
xmax
xmin

) , xmin < x < xmax, α = −1

1 , x > xmax

(3.13.2)
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Problem 15. Calculate the mean and variance of the power-law distribution.

3.14 multivariate distributions

A multivariate distribution is the probability distribution for the joint probability
of two or more random variables. Let’s number these variables x1 through xk. For
discrete variable p(x1, x2, . . . , xk) is the probability that the first variable has the value
x1 and the second variable has the value x2, etc. There is the obvious extension to
continuous variables where p(x1, x2, . . . , xk)dx1dx2 . . . dxk is the probability of all the
variables simultaneously being within infinitesimal ranges near those values.

Now the expectation value implies a sum or integral over all the variables. For an
arbitrary function f(x1, x2, . . . , xk)

E[f(x1, x2, . . . , xk)] =

∫
· · ·
∫
dx1 . . . dxk f(x1, x2, . . . , xk) p(x1, x2, . . . , xk) (3.14.1)

=
k∏
i=1

∫
dxi f(x1, x2, . . . , xk) p(x1, x2, . . . , xk) (3.14.2)

This is also written 〈f(x1, x2, . . . , xk)〉 or f(x1, x2, . . . , xk). The probability distribu-
tion is normalized so E[1] = 1.

The average and variance of each variable are defined in the same way as for a
distribution of one variable. In this case, there is also the covariance between two
variable

Cij = Cov[xixj] ≡ E[(xi − 〈xi〉)(xj − 〈xj〉)] (3.14.3)

If the covariance is greater than zero it means that the two variables tend to be high
and/or low relative to their means simultaneously. If the covariance is negative one
tends to be high while the other is low and vice versa.

Cij is called the covariance matrix. You can see that by construction it is
symmetric, Cij = Cji and that the diagonal components Cii = E[(xi − x̄i)

2] are
positive which together mean its eigenvalues are positive or zero. The covariance
matrix is always positive definite (see appendix A.1). The inverse of the covariance
matrix, CCC−1, is sometimes called the precision matrix.

Changing the units for the variables will change the values of their covariances so
to better measure the degree of correlation it is convenient to normalize the variance
so that it is unitless,

ρxy ≡
Cxy
σxσy

(3.14.4)
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This is called the correlation coefficient or Pearson’s correlation coefficient of
the distribution.

Cov[xy] satisfies all the requirements of an inner ( or ”dot” or ”scalar”) prod-
uct. One of the results of this is that covariance satisfies the Cauchy–Schwarz
inequality

|Cov[xy]|2 ≤ V ar[x]V ar[y] (3.14.5)

A result of this is that −1 ≤ ρxy ≤ 1. Another result of this is that one can define a
kind of geometry in random variable space where the length of a random vector is its
variance and random vectors are perpendicular if their covariance is zero. A concept
of volume or a metric in this space follows.

Another important relation is

Cxy = E[xy]− x̄ȳ (3.14.6)

which is an extension to the relation we already saw for the variance (3.2.6).
Two variables, x and y, are said to be correlated variables if Cov[xy] 6= 0.

Otherwise, they are uncorrelated. Two variables that are independent variables
are also uncorrelated, but uncorrelated variables are not necessarily independent.
Variable with a negative covariance can be called anticorrelated.

Some other properties of CCC are

• CCC is symmetric, Cij = Cji.

• Cii ≥ 0 for all i

• the eigenvalues are ≥ 0

• xxxTCCCxxx ≥ 0 for all non zero xxx, i.e. CCC is a positive semi-definite matrix

• CCC = MMMΛΛΛMMMT where ΛΛΛ is diagonal and MMM is an orthogonal matrix, MMM−1 = MMMT

Problem 16. If x is uniformly distributed between -1 and 1, i.e. x ∼ U(−1, 1),
show that the variable y = x2 is uncorrelated with x, but not independent of x.

Problem 17. Consider points on a plane that are uniformly distributed within a
circle. Are the x and y coordinates correlated? Are they independent?

The multinomial distribution has a covariance of

Cov[xixj] =

{
Npi(1− pi) i = j
−Npipj i 6= j

(3.14.7)

The negative value reflects the property that if xi is larger than its mean, for a fixed N ,
xj is more likely to be below its mean and vice versa. If the units are not distributed
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exactly according to their means then getting more in one bin implies there are less
in others.
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Example :
Let us consider a pixelized image of the sky taken through a telescope. The
signal coming from one pixel will be modeled as

fi = Wij(sj + nj) + b+Ni (3.14.8)

(3.14.9)

or in matrix notation

fff = WWW (sss+ nnn) + bbb+NNN (3.14.10)

sss is the signal coming from the sky and nnn is some noise coming from the
atmosphere or some other source outside of the telescope. bbb is a background
that contributes equally to all pixels. We have tried to subtract it but there
is some uncertainty in that subtraction. Its mean is zero, but it has some
variance. NNN is noise coming from inside the telescope and camera. This
noise might or might not be correlated between pixels. WWW is a matrix that
quantifies the point spread function (psf), the smearing of the image by the
resolution of the telescope. Generally, WWW will not be square so that there
are more pixels for sss and nnn than there are in the final image. This is to
approximate a continuous sky.
If all the noises have zero mean then

〈fff〉 = WWWsss (3.14.11)

since we have subtracted the background. This is a blurred version of the
true sky. The covariance is

CCC =
〈
(fff − 〈fff〉)(fff − 〈fff〉)T

〉
(3.14.12)

=
〈
(WWWnnn+ bbb+NNN)(WWWnnn+ bbb+NNN)T

〉
(3.14.13)

= WWW
〈
nnnnnnT

〉
WWW T +

〈
bbbbbbT
〉

+
〈
NNNNNNT

〉
(3.14.14)

= WWWCCCnWWW
T + σ2

b 111 +CCCN (3.14.15)

where 111 is the matrix with 1s in every entry. All the cross terms are zero
because the noises are independent and the averages of the noises are zero.
If nnn and NNN are uncorrelated between pixels and the variance in each pixel is
the same, this reduces to

CCC = σ2
n WWWWWW T + σ2

b 111 + σ2
N III. (3.14.16)

You can see that even when the noise is not correlated the psf will correlate
the noise in nearby pixels and the background will correlate all the pixels
with each other.
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3.14.1 principal components

principal components play an important role in many data analysis problems as well
as in machine learning and data compression. The principal components are the
components of the random vector xxx after it has been transformed, or rotated, into
the basis of the eigenvectors of the covariance CCC. Explicitly:

yyy = MMM−1(xxx− µµµ) (3.14.17)

Where the columns of MMM are the eigenvectors of CCC and because MMM is orthogonal
MMM−1 = MMMT .

The principal components are uncorrelated,
〈
yyyyyyT

〉
= ΛΛΛ, i.e. 〈yiyj〉 = 0 for i 6= j.

Graphically these principal components are orthogonal vectors in the space in which
xxx lives. In the two-dimensional case, they will tend to line up with the directions in
which the distribution has the most variance and the least variance. The variance of
the components represents how spread out or centrally concentrated the distribution
is in that direction.

It is always possible to find a set of principal components as long as the distri-
bution’s second moments exist. If one or more of CCC’s eigenvalues are zero, in the
directions of the corresponding eigenvectors the distribution has no variance so the
distribution is constrained to a lower dimensional space. If two or more of the eigen-
values are equal, the principal components are not unique, but otherwise, they are.

PCA is useful for several general reasons. One is that some principal components
may have much less noise in them than others. Rather than use xxx in your analysis
you may just use the principal components with the least amount of noise in them.
There is the added bonus that they are uncorrelated so their covariance is diagonal
which makes many calculations easier. This is a kind of data compression where the
noisy parts of the data are discarded.

The distribution of xxx need not be just from noise, however. You might have a
data set that has a distribution of intrinsic properties that you are interested in.
These could the the velocity dispersion, luminosity, and size of galaxies or they could
be the number of times a person visits different websites. The PCs with a large
variance represent linear combinations of these properties which are widely varying
in the population. PCs with small variances are linear combinations that are closer
to constant. In this case, the PCs with large variance might be used to differentiate
between objects. They are the directions of most variation so individual objects might
be well characterized by just a few high-variance PCs rather than needing to fully
specify their position in the original space. In this way, we can obtain a different
sort of data compression and in some cases, when the covariance is estimated from
the data, discover some connections between variables that might not seem related
at first.
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Example :
Consider two pixels from the last example that are far enough apart that the
psf does not correlate them. Their covariance can be represented as

CCC =

(
σ2
N + σ2

b σ2
b

σ2
b σ2

N + σ2
b

)
(3.14.18)

The eigenvectors are (1, 1)/
√

2 and (1,−1)/
√

2 so the principal components
would be (f1 + f2)/

√
2 and (f1− f2)/

√
2. The variance of these are σ2

N + 2σ2
b

and σ2
N .

The whole image, or any part of it, will have its own PCs that will take into
account the psf. Some of these PCs could have much lower variance than
others.

3.15 multivariate Gaussian

The multivariate Gaussian or normal distribution is very widely used in statistics and
all sciences. It is a good approximation to many natural phenomena and is often used
even when it is not. It is also often useful when trying to understand some statistical
argument or principle to put in a multivariate Gaussian because often an analytic
result can be obtained with it while it cannot in general. For these reasons, any good
student of statistics needs to have a good intuitive understanding of and the ability
to easily manipulate the multivariate normal distribution. I will go through some of
its important properties and examples.

The n random variables will be grouped into a vector xxx. The pdf of the multi-
variate Gaussian is a generalization of the one-dimensional Gaussian pdf.

p(xxx|µµµ,CCC) =
1

(2π)n/2
√
|CCC|

exp

[
−1

2
(xxx− µµµ)TCCC−1(xxx− µµµ)

]
(3.15.1)

≡ G (xxx |µµµ,CCC ) (3.15.2)

where CCC is a n-by-n matrix and µµµ is an n dimensional vector of parameters. |CCC| is
the determinant of CCC. This will define the function G (xxx |µµµ,CCC ). To signify that xxx is
distributed in this way we write xxx ∼ N (µµµ,CCC) just like for the one-dimensional case.
xxxT is the transpose of xxx.

Theorem 3.15.1 The means of the multivariate Gaussian are

E[xi] = µi or E[xxx] = µµµ (3.15.3)
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Theorem 3.15.2 The covariances of the multivariate Gaussian are

Cov[xixj] = E[(xi − µi)(xj − µj)] = Cij or Cov[xxxxxx] = E[(xxx− µµµ)(xxx− µµµ)T ] = CCC
(3.15.4)

Theorem 3.15.3 Any affine transformation of Gaussian distributed variables (yyy =
AAAxxx+ bbb where AAA and bbb are constant) is also Gaussian distributed.

So CCC is the correlation matrix as the choice of notation suggests. For the special
case of a diagonal covariance matrix, the diagonal elements are the σ2s. The
covariance matrix will take the form

CCC−1 =

 σ2
1 0 . . .

0 σ2
2 . . .

...
...

. . .


−1

=


1
σ2

1
0 . . .

0 1
σ2

2
. . .

...
...

. . .

 (3.15.5)

In this case, there are no correlations between different variables.

PROOF OF MEAN: (theorem 3.15.1)

Let’s calculate the means first

E[xi] =

∫ ∞
−∞

dxi . . .

∫ ∞
−∞

dxi . . .

∫ ∞
−∞

dxn xi p(xxx|µµµ,CCC) (3.15.6)

(3.15.7)

We can change variables to a set where xxx′ = xxx− µ and all the others are unchanged.
This will make µµµ get substituted for µµµ′ which is the zero vector mu′i = 0,

E[xi] =

∫ ∞
−∞

dx1 . . .

∫ ∞
−∞

dx′i . . .

∫ ∞
−∞

dxn (µi + x′i) p(xxx
′|µµµ′,CCC) (3.15.8)

= µi

∫ ∞
−∞

dx1 . . .

∫ ∞
−∞

dx′i . . .

∫ ∞
−∞

dxn p(xxx
′|µµµ′,CCC) +

∫ ∞
−∞

dx1 . . .

∫ ∞
−∞

dx′i . . .

∫ ∞
−∞

dxn x
′
i p(xxx

′|µµµ′,CCC)

(3.15.9)

The first set of integrals must be 1 because the pdf is normalized. The second set
must be zero because p(xxx′|0,CCC) is symmetric ( p(−xxx′|0,CCC) = p(xxx′|0,CCC)) and x′i is
antisymmetric.

PROOF OF VARIANCE: (theorem 3.15.3)
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Cov[xxx,xxx] =

∫ ∞
−∞

dnx (xxx− µµµ)(xxx− µµµ)T p(xxx|µµµ,CCC) (3.15.10)

=

∫ ∞
−∞

dnz zzzTzzz p(zzz|0,CCC) zzz = xxx− µµµ (3.15.11)

Because CCC is a symmetric, positive definite matrix there exists a eigendecomposi-
tion

CCC = UUUΣΣΣUUU−1 (3.15.12)

where ΣΣΣ is a diagonal matrix whose elements are the eigenvalues and UUU is an orthog-
onal matrix which means that

UUUT = UUU−1 (3.15.13)

|UUU | ≡ det(UUU) = 1 (3.15.14)

The columns of UUU are the eigenvectors of CCC. Note also

ΣΣΣ = UUUTCCCUUU (3.15.15)

Using this we can change variables into yyy = UUU−1zzz,

e
1
2
zzzTCCC−1zzz dnz = e

1
2
zzzTUUU−1ΣΣΣUUUTzzz dnz = e

1
2

(UUUTzzz)TΣΣΣ−1(UUUTzzz) dnz = e
1
2
yyyTΣΣΣ−1yyy |UUU |dny = e

1
2
yyyTΣΣΣ−1yyy dny

(3.15.16)

So the components of yyy are all independent and we can use the one-dimensional
Gaussian distribution to calculate the mean of each component

Cov[xxx,xxx] = Cov[zzz,zzz] (3.15.17)

=

∫ ∞
−∞

dnz zzzzzzT p(zzz|0,CCC) (3.15.18)

=

∫ ∞
−∞

dny (UUUyyy)(UUUyyy)T p(yyy|0,ΣΣΣ) (3.15.19)

=

∫ ∞
−∞

dny UUUyyyyyyTUUUT p(yyy|0,ΣΣΣ) (3.15.20)

= UUU

∫ ∞
−∞

dny yyyyyyT p(yyy|0,ΣΣΣ)UUUT (3.15.21)

= UUUΣΣΣUUUT (3.15.22)

= CCC (3.15.23)
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If all the eigenvalues of CCC are nonzero then it is invertible. This will always be the
case for a proper Gaussian distribution since otherwise, it would not be normalizable.
However, these cases do sometimes come up for distributions in parameter space.
More on this later.

The third-order central moments and all other odd-ordered central moments are
zero. The fourth-order central moments are given by

〈xixjxkxl〉 = CijCkl + CikCjl + CilCjk (3.15.24)

In general, then even central moments are given by Isserlis’s theorem :

〈x1x2 . . . xn〉 =
∑
P

∏
pairs ij in P

Cij (3.15.25)

where the sum is over all distinct ways of breaking the n variables into pairs and the
product is over those pairs. There will be (k− 1)!/(2k/2−1(k/2− 1)! terms for the kth
order moments although if some of the variables are repeated some of the terms will
be the same. In the context of quantum field theory, this is known as Wick’s theorem
.

Conditional Gaussian distribution

Let’s break the parameters, xxx, into two sets, yyy and zzz. We will fix the parameters zzz and
ask what the pdf for the parameters yyy is, p(yyy|zzz). If the covariance matrix is diagonal
then p(yyy|zzz) is clearly Gaussian. When the covariance is not diagonal the distribution
of yyy is still Gaussian distributed, but with a different covariance and mean.

Let’s partition the covariance matrix into a part that involves only components of
yyy, Cyy, a part that involves only components of zzz, Czz and a component that involves
mixtures of the two, Cxy.

xxx =

[
yyy
zzz

]
µµµ =

[
µµµy
µµµz

]
CCC =

[
Cyy Czy

CT
zy Czz

]
(3.15.26)

The conditional pdf is then

p(yyy|zzz) = G
(
yyy
∣∣µµµ′y,ΣΣΣyy

) {
µµµ′y = µµµy +CCCzyCCC

−1
zz (zzz − µµµz)

ΣΣΣyy = CCCyy −CCCzyCCC
−1
zz CCC

T
zy

(3.15.27)

which means

p(yyy|zzz) =
1√

(2π)Dy |ΣΣΣyy|
e−

1
2

(yyy−µµµ′y)TΣΣΣ−1
yy (yyy−µµµ′y) (3.15.28)

∝ exp

[
−1

2

(
yyy − µµµy −CCCzyCCC

−1
zz (zzz − µµµz)

)T (
CCCyy −CCCzyCCC

−1
zz CCC

T
zy

)−1 (
yyy − µµµy −CCCzyCCC

−1
zz (zzz − µµµz)

)]
(3.15.29)
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Marginalized Gaussian distribution

If we integrate over the parameters zzz we get the marginal distribution

p(yyy) =

∫ ∞
−∞

dzzz p(xxx) =

∫ ∞
−∞

dzzz p(yyy,zzz) =

∫ ∞
−∞

dzzz p(zzz)p(yyy|zzz) (3.15.30)

Using the same definitions this is

p(yyy) = G
(
yyy
∣∣µµµy,CCCyy

)
. (3.15.31)

So the correlation with zzz drops out.
The proof for the conditional and marginal distributions in the general case is

rather long algebraically. I won’t go through it, but one step in it is an identity that
will be useful in manipulating covariance matrices. This is the matrix completion
of squares formula

1

2
xxxTAAAxxx+ bTxxx =

1

2

(
xxx−AAA−1b

)T
AAA
(
xxx−AAA−1b

)
− 1

2
bTAAA−1b (3.15.32)

for a symmetric and invertible AAA which is the matrix equivalent of the scalar formula
ax2 + bx = a(x+ b

2a
)2 − b2

4a
.

Combining two multivariate Gaussians

G (xxx |µµµ1,CCC1 )G (xxx |µµµ2,CCC2 ) = G (µµµ1 |µµµ2,ΣΣΣ)G (xxx |µµµc,ΣΣΣ) (3.15.33)

ΣΣΣ = CCC1 +CCC2 (3.15.34)

µµµc = ΣΣΣ−1 (CCC1µµµ1 +CCC2µµµ2) (3.15.35)

In particular if

CCC1 = σ2
1 and CCC2 = σ2

2 (3.15.36)

then
CCC−1

1 = 1
σ2

1
and CCC−1

2 = 1
σ2

2

ΣΣΣ = σ2
1 + σ2

2

ΣΣΣ−1 = (σ2
1 + σ2

2)−1

µµµc =
µ1σ2

1+µ2σ2
2

σ2
1+σ2

2

(3.15.37)

A particularly important application of this rule is for the distribution of the sum
of two independent Gaussian distributed variables.
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Theorem 3.15.4 If xxx ∼ N (0,CCC1) and xxx′ ∼ N (0,CCC2) and their sum is sss = xxx + xxx′

then sss ∼ N (0,CCC1 +CCC2).

Let’s call them xxx and xxx′ and their sum sss = xxx+ xxx′.

p(sss) =

∫ ∞
−∞

dnx

∫ ∞
−∞

dnx′ p(sss,xxx,xxx′) (3.15.38)

=

∫ ∞
−∞

dnx

∫ ∞
−∞

dnx′ p(xxx,xxx′)p(sss|xxx,xxx′) (3.15.39)

=

∫ ∞
−∞

dnx

∫ ∞
−∞

dnx′ p(xxx,xxx′)δD(sss− xxx− xxx′) (3.15.40)

=

∫ ∞
−∞

dnx p(xxx,sss− xxx) (3.15.41)

=

∫ ∞
−∞

dnx G (xxx |0,CCC1 )G (sss− xxx |0,CCC2 ) (3.15.42)

=

∫ ∞
−∞

dnx G (xxx |0,CCC1 )G (xxx |sss,CCC2 ) (3.15.43)

=

∫ ∞
−∞

dnx G (xxx |µµµc,ΣΣΣ)G (sss |0,ΣΣΣ) (3.15.44)

= G (sss |0,ΣΣΣ)

∫ ∞
−∞

dnx G (xxx |µµµc,ΣΣΣ) (3.15.45)

= G (sss |0,ΣΣΣ = CCC1 +CCC2 ) (3.15.46)

3.16 χ2 distribution

The χ2 distribution is not a multivariate distribution but is closely related to the
multivariate Gaussian. Consider a multivariate Gaussian distribution with an uncor-
related variable, or equivalently a diagonal covariance. Let’s define a new variables

z =
n∑
i

(xi − µi)2

σ2
i

. (3.16.1)

z is often called χ2. This can be confusing because the random variable is not χ, but
z = χ2. We want to change variables from x1, x2, . . . to z. The Gaussian distribution
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Figure 3.3: χ2
n distribution for some different degrees of freedom, n.
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is

p(x1, x2, . . . xn)dx1 . . . dxn =
1

(2π)n/2
∏

i σi
e
− 1

2

∑n
i

(xi−µi)
2

σ2
i dx1 . . . dxn (3.16.2)

=
1

(2π)n/2
e−

1
2

∑n
i=1 x

′2
i dx′1 . . . dx

′
n x′ =

x− µ
σ

(3.16.3)

=
1

(2π)n/2
e−

1
2
zdx′1 . . . dx

′
n (3.16.4)

Since the Cartesian distance in x′-space is
√∑

i x
′2
i , z can be seen as the square of

the radial coordinate in n dimensional space

dx′1 . . . dx
′
n = rn−1drdθ1dθ3 · · · =

1

2
zn/2−1dzdnΩ (3.16.5)

Because the pdf is a function of only the z coordinate we can integrate, marginal-
ize, over the angular coordinates which will result in a n dependent normalization
constant. The final pdf is

p(z = χ2|n) =

{
1

2n/2Γ(n2 )
z
n
2
−1e−

z
2 z ≥ 0

0 z < 0
(3.16.6)

where the gamma function is defined as

Γ(x) ≡
∫ ∞

0

dt e−ttx−1. (3.16.7)

This is called the ”χ2 distribution of n degrees of freedom”. It will be very impor-
tant for calculating the significance of Gaussian distributed data. The mean of this
distribution is E[x] = n and the variance V ar[x] = 2n. For this reason, the value
of χ2

n/n, called the reduced χ2, is often given and compared to 1. The mode is
x =max(n − 2, 0) so χ2

n/n = 1 is not actually the most likely value. The skewness
is
√

8/n so as n increases the pdf becomes more symmetric. The pdf is plotted in
figure 3.3.

The cumulative distribution function can be written down in terms of other special
functions without much insight coming from it except in the special case of n = 2
where it is

F (x|2) = 1− e−x/2 (3.16.8)

The general case is of course available in any statistical software package.
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Figure 3.4: Student’s t distribution for some different degrees of freedom, ν. The
dotted curves are Gaussians with the same variances for comparison.

Theorem 3.16.1 If x1 ∼ χ2
n1

, x2 ∼ χ2
n2

and s = x1 + x2 then s ∼ χ2
n1+n2

.

This can be proven in a similar way to how it was shown that the some of squares of
Gaussian distributed variables are ∼ χ2. Or with the characteristic function for the
χ2 distribution which is

φ(t) = E[eikx] = (1− 2it)−n/2 (3.16.9)

Problem 18. Prove theorem 3.16.1.

Problem 19. The velocity distribution for particles in an ideal gas is a multivariate
Gaussian in three dimensions, (v1, v2, v3). Using the above find the distribution for
the particles’ kinetic energy.

For a correlated multivariate Gaussian

(xxx− µµµ)TCCC−1(xxx− µµµ) ∼ χ2
n (3.16.10)
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To see why this is so consider again the principal components yyy = UUUT (xxx − µµµ) such
that UUUTCCCUUU = ΛΛΛ where ΛΛΛ is diagonal. Then

(xxx− µµµ)TCCC−1(xxx− µµµ) = yyyTUUUTCCC−1UUUyyyT (3.16.11)

= yyyTΛΛΛ−1yyyT (3.16.12)

since UUUTCCCUUUUUUTCCC−1UUU = III. Expression (3.16.12) is a sum of the squares of n indepen-
dent, standard normally distributed variables since ΛΛΛ is diagonal and the covariance
matrix of yyy. So it is distributed in the same way as (3.16.1), i.e. χ2

n distributed.

3.17 student’s t-distribution

Yet another distribution that comes up often is the student’s t-distribution (or just
the t-distribution). The pdf is

p(x|ν) =
Γ
(
ν+1

2

)
√
νπ Γ

(
ν
2

) [1 +
x2

ν

]− ν+1
2

(3.17.1)

This distribution has a mean and mode at zero. It is symmetric about this point.
Variance is ν

ν−2
for ν > 2. It resembles a Gaussian, but with more weight in the

wings, see figure 3.4.

3.18 Gamma distribution

The gamma distribution has a PDF given by

p(x|α, β) =
βα

Γ(α)
xα−1e−βx (3.18.1)

The exponential distribution (α = 1) and the χ2-distribution (α = n/2, β = 1/2)
are special cases. Its mean is equal to α/β and its variance is α/β2. In astronomy,
this distribution is often used to model galaxy luminosity function where it goes by
the name Schechter function (after MIT astronomer Paul Schechter) although the
measured values for α can make it unnormalizable so a cutoff at small x is required.



Chapter 4

Sampling

In the last section, we dealt with probability distributions and random variables.
The means and variances were the means of variances evaluated by summing (or
integrating) over all possible values of the random variables. A random variable is
a purely theoretical construction and real data consists of a finite set of observed
values. These are sampled from the distribution or are a sample of the possible data
sets. This is where we move from the purely mathematical subject of probability
theory to the practical (and more subjective) field of statistics.

A statistic is simply any function of a sample or data points. The arithmetic
mean and the sample variance are the simple examples. In the case of normally
distributed data, the probability distribution of these statistics among all possible
data sets can be derived analytically which makes them important examples.

Fundamental to statistics and its connection to probability is the law of large
numbers. This holds that for any function of random variables f(x)

lim
n−>∞

[
1

n

n∑
i=1

f(xi)

]
= Ep [f(x)] . (4.0.1)

where xi are drawn from the distribution p(x). From this follows many of the results
of statistics.

To be a bit more precise, the sum above converges to the expectation value ”in
probability”. This is somewhat technical, but the term appears a lot in the statistics
literature so let me briefly explain. Let ln(xxx) be some function of n random variables
(or a sequence of random variables). Let P (|ln − l| < ε) be the probability that ln
is within a ball of radius ε centered on the value l. It is said that ln converges in
probability to l if for any positive real values ε and δ there exists an N such that
for all n ≥ N , P (|ln − l| < ε) < δ. This means what you think it means, but in a

mathematically precise way. Converging in probability is often denoted with
p−→ in

the literature. I will usually leave the p out and just use the arrow.

63
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In this chapter, we will look at some of the basic properties of a finite sample
drawn from a distribution.

4.1 estimating the mean

Say we have a finite sample drawn from a distribution with pdf p(x|µ, σ) where µ is
the mean and σ is the standard distribution. Let us say there are N samples denoted
x1, . . . xN and they are all independent draws from the distribution.

The arithmetic mean or sample mean of this data is

x̄N ≡
1

N

N∑
i=0

xi (4.1.1)

which everyone knows. Confusingly this is usually called just the mean or average
just like the mean or average of a distribution, E[x], although it is usually clear from
the context which one is meant. E[x] is a sum or integral over all possible values of
x weighted by the pdf and x̄N is an unweighted sum over a finite sample of values.

We can take the expectation value of the arithmetic mean

〈x̄N〉 =
1

N

N∑
i=0

〈xi〉 (4.1.2)

=
1

N

N∑
i=0

µ (4.1.3)

= µ (4.1.4)

The arithmetic mean of a sample is an estimate, or an estimator, of the mean of the
distribution. This is the simplest example of an unbiased estimator (its average
equals the quantity being estimated). It is not the only estimator of the mean and it
is not always the best estimator of the mean.

For a finite sample, the arithmetic mean will not always equal the mean of the
distribution. One might want to know how good an estimate it is. One way to
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quantify this is to calculate the variance of the arithmetic mean,

V ar[x̄N ] =
〈
[x̄N − µ]2

〉
(4.1.5)

=
〈
[x̄N ]2

〉
− 2µ〈x̄N〉+ µ2 (4.1.6)

=
〈
[x̄N ]2

〉
− µ2 (4.1.7)

=

〈[
1

N

N∑
i=0

xi

]2〉
− µ2 (4.1.8)

=
1

N2

N∑
i=0

N∑
j=0

〈xixj〉 − µ2 (4.1.9)

=
1

N2

[
N∑
i=0

〈
x2
i

〉
+
∑
i 6=j

〈xixj〉

]
− µ2 (4.1.10)

=
1

N2

[
N∑
i=0

(σ2 + µ2) +
∑
i 6=j

〈xi〉〈xj〉

]
− µ2 (4.1.11)

=
1

N2

[
N(σ2 + µ2) +N(N − 1)µ2

]
− µ2 (4.1.12)

=
σ2

N
(4.1.13)

So you can see that the standard deviation of the mean will go down like ∝ 1/
√
N

no matter what the underlying distribution is as long as the mean and variance exist.
Of course, to calculate this variance we need to know the underlying variance, σ2,
which we often do not know, and can even not exist.

So far we have not made any assumptions about how x is distributed except that
the first 2 moments exist. Since the arithmetic mean is a linear function of the data,
if the data is normally distributed the arithmetic mean will be normally distributed
by theorem 3.15.4.

if xxxi ∼ N (µµµ, σ) then x̄N ∼ N
(
µµµ,

σ√
N

)
(4.1.14)

It often happens that one is making repeated measurements of something, say
the luminosity of a star, and the variance of the noise is not the same for each
measurement because the conditions change or you are combining data from different
instruments that have different noise levels. Nevertheless, the thing you want to
know, the luminosity of the star, should be constant. The arithmetic mean (4.1.2)
will on average equal µ, but what if one measurement has a lot of noise – σi is very
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large? This data point will be a less good estimate of the mean than the other points.
Including it in the sum might make the estimate worse rather than better!

Consider the estimator

θ̂ =
∑
i

wixi (4.1.15)

which we can call the weighted mean. Clearly the average of this,
〈
θ̂
〉

will equal µ

if ∑
i

wi = 1. (4.1.16)

We have the freedom to choose these weights subject to this constraint. A good idea
is to minimize the variance of the estimator. This will make it the simplest case of a
minimum variance estimator. The variance of the estimator will be

σ2
θ =

〈
θ̂2
〉
− µ2 (4.1.17)

=

〈[∑
i

wixi

]2〉
− µ2 (4.1.18)

=
∑
ij

wiwj〈xixj〉 − µ2 (4.1.19)

=
∑
i

w2
i

〈
x2
i

〉
+
∑
i 6=j

wiwj〈xi〉〈xj〉 − µ2 (4.1.20)

=
∑
i

w2
i

[
σ2
i + µ2

]
+ µ2

∑
i 6=j

wiwj − µ2 (4.1.21)

To minimize the variance we will use the technique of Lagrange multipliers
which you should know from calculus. We minimize the function

F (www) = σ2
θ(www) + λ

(
1−

∑
i

wi

)
(4.1.22)

with respect to the weights. That is

∂F

∂wk
=
∂σ2

θ

∂wk
− λ = 0 (4.1.23)
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The derivative of the variance is

∂σ2
θ

∂wk
= 2wk

[
σ2
k + µ2

]
+ 2µ2

∑
i 6=k

wi (4.1.24)

= 2wk
[
σ2
k + µ2

]
+ 2µ2

[
N∑
i=0

wi − wk

]
(4.1.25)

= 2wk
[
σ2
k + µ2

]
+ 2µ2 [1− wk] use constraint

∑
i

wi = 1 (4.1.26)

= 2wkσ
2
k + 2µ2 (4.1.27)

putting this into (4.1.23) gives

wk =
λ− 2µ2

2σ2
k

(4.1.28)

Plugging this into the constraint (4.1.16) and solving for

λ = 2µ2 + 2

[∑
k

1

σ2
k

]−1

(4.1.29)

so

wk =

[∑
i

1

σ2
i

]−1
1

σ2
k

(4.1.30)

So the estimator (4.1.15), the one with the minimum variance, is

θ̂ =
1[∑
i

1
σ2
i

]∑
i

xi
σ2
i

. (4.1.31)

This is often called inverse noise weighting. You can see that a data point with a
large σ2

i will be downweighted with respect to points that have small σ2
i .

Problem 20. What is the variance of the minimum variance estimator of the
mean (4.1.31)?

Problem 21. What is the minimum variance estimator of the mean if the data
points are not independent and have convariance CCC?
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4.2 estimating the variance

Let us go back to the case of N data points sampled from the same distribution. We
might want to know the variance of the distribution. This could be the variance from
noise so we can measure how well our apparatus is working or it could be that we are
interested in the variance of the ”signal” itself that is not constant. For example, say
we want to characterize ocean waves from discrete measurements of the height of the
water’s surface. The variance in the height might be a good quantity to measure.

Known mean: If the mean of the underlying distribution is known we can esti-
mate the variance of that distribution with

S2
N =

1

N

∑
i

(xi − µ)2 (4.2.1)

You can easily show that 〈S2
N〉 = σ2.

Unknown mean: In most cases one does not know the average ahead of time.
In this case the best estimator for a Gaussian distributed x is

S2
N =

1

N − 1

∑
i

(xi − x̄N)2 . (4.2.2)

Why is there an N −1 instead of an N in the denominator? Let’s look at the average
of it〈

S2
N

〉
=

1

N − 1

∑
i

〈
(xi − x̄N)2〉 (4.2.3)

=
1

N − 1

[∑
i

〈
x2
i

〉
− 2

〈∑
i

xix̄N

〉
+
∑
i

〈
(x̄N)2

〉]
(4.2.4)

=
1

N − 1

[∑
i

(σ2 + µ2)− 2N
〈
(x̄N)2

〉
+N

〈
(x̄N)2

〉]
(4.2.5)

=
1

N − 1

[∑
i

(σ2 + µ2)−N
〈
(x̄N)2

〉]
(4.2.6)

=
1

N − 1

[
N(σ2 + µ2)−N

(
σ2

N
+ µ2

)]
using (4.1.13) (4.2.7)

= σ2 (4.2.8)

So this estimator is unbiased. Note that this does not require that the x’s be normally
distributed. If there were an N in the denominator of (4.2.2) then 〈s2

N〉 = (N−1)σ/N
which means it would be biased, but since the bias gets smaller as N increases it
would be a simple example of an asymptotically unbiased estimator.
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Theorem 4.2.1 If xi ∼ N (µ, σ) and SN is given by (4.2.2) then z =
(N−1)S2

N

σ2 is
χ2
N−1 distributed.

half proof:

(N − 1)S2
N

σ2
=

1

σ2

∑
i

(xi − x̄)2 (4.2.9)

=
1

σ2

∑
i

[(xi − µ)− (x̄− µ)]2 (4.2.10)

=
1

σ2

∑
i

[
(xi − µ)2 − 2(xi − µ)(x̄− µ) + (x̄− µ)2

]
(4.2.11)

=
1

σ2

∑
i

[
(xi − µ)2

]
− 2N(x̄− µ)(x̄− µ) +N(x̄− µ)2 (4.2.12)

=
∑
i

(xi − µ)2

σ2
− N(x̄− µ)2

σ2
(4.2.13)

This is the difference of two χ2 distributed quantities. (x̄−µ)2/(σ2/N) ∼ χ2
1 because,

as we already saw, x̄ is normally distributed.
∑

i(xi−µ)2 ∼ χ2
N because it is the sum

of the squares of N normally distributed numbers. By theorem 3.16.1 the sum of a χ2
m

distributed variable and a χ2
n distributed variable is ∼ χ2

m+n So
(N−1)S2

N

σ2 ∼ χ2N − 1.
This assumes that (x̄ − µ)2 and S2

N are independent which is not obvious. We will
return to this detail in section 8.2 where we will show that this is in fact true.

From what we know about the χ2, distribution, this means that our statistic S2
N

has the following properties from〈
(N−1)
σ2 S2

N

〉
= N − 1 ⇒ 〈S2

N〉 = σ2

V ar
[

(N−1)
σ2 S2

N

]
=

〈(
(N−1)
σ2 S2

N

)2
〉
−
〈

(N−1)
σ2 S2

N

〉2

= 2(N − 1) ⇒ V ar [S2
N ] = 2σ4

(N−1)

(4.2.14)

So the standard deviation of our estimated variance again goes down like ∼ 1/
√
N

for large N . We can also find the probability that S2
N will be within some range using

the cumulative distribution for a χ2 distribution

P

(
σ2

(N − 1)
z1 < S2

N <
σ2

(N − 1)
z2

)
= Fχ2

N−1
(z2)− Fχ2

N−1
(z1) (4.2.15)

Measuring the variance of a signal is closely related to measuring the correlation
function or the power spectrum of a signal. We will return to that problem later.

Problem 22. Given a sample of n correlated measurements with covariance CCC
what is the minimum variance unbiased linear estimator for the mean?
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4.3 estimating the mean when the variance is un-

known

We have learned that x̄ is N (µ, σ/
√
n) distributed if the xi’s are normally distributed.

So if we have a measurement and we know the noise, σ, we can put an error on our
estimate of the mean ± σ√

n
. But often we do not know the σ’s. We can estimate it

with S2
n, but this estimate is based on the same data as the estimate of x̄ and so x̄

will not be N (µ, Sn/
√
n) distributed.

Theorem 4.3.1 If xi ∼ N (µ, σ) then

t = (x̄− µ)

√
n

S2
n

(4.3.1)

is student-t distributed with n− 1 degrees of freedom.

The t-distribution was introduced in section 3.17.
So if we wanted to measure the average level of some chemical in people’s blood,

for example, we might model the underlying distribution, human variation plus mea-
surement error, to be Gaussian. We do not know the variance among people or
perhaps the error in our chemical testing equipment. We estimate the mean with
the arithmetic mean, x̄, and we can calculate the probability of this estimate being
within ±δx as

p(µ− δx < x̄ < µ+ δx) =

∫ +δx
√

n

S2
n

−δx
√

n

S2
n

dt pt(t|ν = n− 1) (4.3.2)

=

√
n

S2
n

∫ +δx

−δx
dx′ pt

(
x′
√

n

S2
n

∣∣∣∣ ν = n− 1

)
(4.3.3)

where pt(t|ν) is given in section 3.17. Note that we calculate the probability that x̄,
a statistic of random data, will be within some range of µ, an unknown parameter.
This is an example of frequentist hypothesis testing. We will return to this kind of
problem later and examine it in detail.

Problem 23. You are measuring the energies of photons. Your detector saturates
at some maximum energy Emax so that any photons with energies higher than this
register as E = Emax. If the probability distribution for photons is f(E) what will be
the mean of the observed energies? What if you are unable to detect photons above
E = Emax at all?
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Figure 4.1: The probability of the sample median for normal (above) and lognormal
(below) distributions. The n = 1 case is the original distribution. The dotted curves
in the normal case are the distributions of the sample means based on the same n’s.
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4.4 median

It is often useful to estimate the median of a distribution. It can be a better represen-
tative value of a distribution than the mean when the distribution is highly skewed
or there are a few large extreme outliers. A common example of this is the median
income of a population. A small number of people with very high incomes can have
a large effect on the mean income, but the median is a more robust representative
value for a typical person in that population. Also, the median can often be more
accurately estimated from a small number of observations than the mean. This is
particularly true for a distribution with extended tails like a power-law or Lorentzian
where the mean might not even be defined. Running median filtering is also a com-
mon way to subtract a background in say a spectrum and usually performs better
than a running mean filter.

Consider the median of a sample. Let us assume there are an odd number of
observations so the median is well defined. For the median to have value xmed

one observation must be between xmed and xmed + dx. The probability of this is
p(x)dx. In addition, there must be (N − 1)/2 observed smaller (and larger) values
out of the remaining N − 1 values. The probability of an observation being below
xmed is the cumulative probability function F (xmed). The probability of n indepen-
dent observations out of N − 1 having being < xmed is the binomial distribution
Pbinom(n|N − 1, p = F (xmed)). The probability of both of these things happening is
the product of their probabilities (product rule for independent events). Any of the
N values could be the median so there is a factor of N . The final pdf for the median
is

pm(xmed|N) = Np(xmed)Pbinom

(
(N − 1)

2

∣∣∣∣F (xmed), N − 1

)
(4.4.1)

= N

(
N − 1
N−1

2

)
p(xmed)F (xmed)

N−1
2 [1− F (xmed)]

N−1
2 (4.4.2)

= N

(
2n

n

)
p(xmed)F (xmed)n [1− F (xmed)]n (4.4.3)

where N = 2n+ 1.
Let us find the mode of this distribution. The log of the probability is

ln pm(x) = ln p(x) + n lnF (x) + n ln[1− F (x)] + C. (4.4.4)

Taking the derivative of this and setting it to zero gives

1

p(x̂)

∂p(x̂)

∂x
+ n

p(x̂)

F (x̂)
− n p(x̂)

1− F (x̂)
= 0 (4.4.5)
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using the fact that the derivative of the cumulative distribution is the pdf. For large
N and thus n we can ignore the first term and

F (x̂) =
1

2
. (4.4.6)

as we would expect. For smaller N there will be a bias if ∂p(x̂)
∂x
6= 0.

Let’s expand the log-pdf for the median, (4.4.4) around the mode x̂. First

ln [F (x)] ' ln [F (x̂)] +
1

F (x̂)
F ′(x̂)(x− x̂) +

1

2

(
1

F (x̂)
F ′′(x̂)− 1

F (x̂)2
(F ′(x̂))2

)
(x− x̂)2 + . . .

(4.4.7)

= − ln [2] + 2p(x̂)(x− x̂) +
(
p′(x̂)− 2(p(x̂))2

)
(x− x̂)2 + . . . (4.4.8)

and

ln [1− F (x)] ' − ln [2] + 2p(x̂)(x− x̂)−
(
p′(x̂) + 2(p(x̂))2

)
(x− x̂)2 + . . . (4.4.9)

so

ln pm(x) ' ln pm(x̂)− 4n(p(x̂))2(x− x̂)2 + C (4.4.10)

A Gaussian approximation to pm(x) valid when N is large will then be

pm(x) =
1√

2πσm
e
− (x−x̂)2

2σ2
m (4.4.11)

where the variance about x̂ is given by

V ar[xmed] = σ2
m '

1

8np(xmed)2
' 1

4Np(xmed)2
N � 1 (4.4.12)

For x ∼ N (µ, σ) the sample mean has a smaller variance than the sample median

by a factor of 2
π
. A more careful calculation for small N gives a factor of ∼ 2

π
(N+2)
N

between them. For a distribution with larger tails than Gaussian and with small
sample sizes the median will have a smaller variance than the mean.

4.5 extreme values

The distribution of the sample maximum (or minimum or the n-th largest value) can
be found in the same way as the median

pmax(x|N) = Np(x)Pbinom (N − 1|F (x), N − 1) (4.5.1)

= Np(x)Pbinom (0|1− F (x), N − 1) (4.5.2)

= Np(x)F (x)N−1 (4.5.3)
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Problem 24. If we have a sample of N numbers drawn from a uniform distribution
between 0 and L what is the distribution of the maximum of the set?

Problem 25. Say there are N dust particles in a spherical balloon. What is
the distribution of the distance between the skin of the balloon and the nearest dust
particle?

4.6 quantile estimation

The q-quantiles of a distribution are the set of values that divide the full range into
q regions of equal probability. They are the generalization of the median which would
be the 2-quantile. The nth q-quantile is at the point where F (x) = n/q. There are
several slightly different ways to estimate this from a sample, but they all agree for
large N and generally follow this approach. Rank the data (order them by value from
least to greatest) and then take the data point whose rank is closest to r = nN/q+1/2
to be an estimate of the nth q-quantile. This 1/2 makes the ranks for the median
(q = 2, n = 1) work out to the sample median we used before. Other choices have
over properties (see Wikipedia). If r is an integer then we can work out pdf in the
same way as before.

p(xn|N) = Np(xn)Pbinom (r − 1|F (xn), N − 1) (4.6.1)

p(xn|N) = Np(xn)Pbinom

(
nN

q
− 1

2

∣∣∣∣F (xn), N − 1

)
(4.6.2)

As we will see, when doing Monte Carlo calculations you might only have access
to a sample taken from a distribution that you cannot write down analytically. It
is often useful to estimate the quantile range of the distribution or estimate a range
that contains some fixed probability, say 68% or 95%. One might use (4.6.1) with an
estimate of the true pdf to judge how well the range can be estimated.



Chapter 5

The Bayesian method

The Bayesian approach to inference gives us a general framework for constraining
models for physical processes and for models that describe the probabilistic distribu-
tion of the data. It does this by attempting to calculate the probability of a model
or specific values for model parameters given the data and any prior knowledge. The
Bayesian interpretation of probability allows us to assign a probability to the possibil-
ity of a model being the true one relative to the other models considered. In contrast,
the frequentist approach, which we will look at later, prohibits assigning probability
to the models; only data is probabilistic.

5.1 Posterior, likelihood, prior and evidence

All Bayesian analyses begin with Bayes’s theorem. We saw this theorem in section 1.5
as a basic property of conditional probabilities. Let me point out that the theorem
itself is a mathematical relation and thus it is valid no matter what your interpretation
of probability is or what your approach to statistical inference is. The difference
between frequentist and Bayesian statistics fundamentally lies in to what probabilities
are assigned.

Let DDD be some amount of data. Let Mi be a model that attempts to explain
this data. It is a member of a set of models {M1,M2 . . . }. These models might
be completely different with different parameters (say General Relativity, Newtonian
Gravity and MOND1) or they might differ by only the values of a model’s parameters
(the planet has unknown mass m). Let’s let I represent everything else in the Universe
that we will take to be fixed or irrelevant to our experiment (the existence of the
apparatus, the day of the week, the phase of the moon on a distant planet). We

1Modified Newtonian Dynamics, an alternative theory of gravity.
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apply Bayes’s theorem to this situation

P (Mi|DDD, I) =
P (DDD|Mi, I)P (Mi|I)

P (DDD|I)
(5.1.1)

=
P (DDD|Mi, I)P (Mi|I)∑
i P (DDD|Mi, I)P (Mi|I)

(5.1.2)

The second line follows from P (DDD|I) =
∑

i P (DDD,Mi|I) =
∑

i P (DDD|Mi, I)P (Mi|I)
which is the probability that the data will occur assuming the correct model is one of
the Ms’s. I include I here only to emphasize that every probability has some implicit
assumptions. Some of these assumptions could be incorporated into the model, but
if they have no effect on the outcome of the experiment or they were never changed
when the experiments were conducted they can be considered conditionals for all the
probabilities. In the future, the I will be considered implicit and not included.

In this context, each of the factors in Bayes’s theorem have special names:

• P (Mi|DDD) is called the posterior probability for model Mi given the data.
This is the goal of Bayesian inference although one often summarizes this result
by finding the average, mode, covariance, or credibility regions.

• P (DDD|Mi) is called the likelihood. It is the probability of getting the observed
data given the model Mi. It is often denoted L(DDD|Mi). This is the same
probability as is used in frequentist methods. Often this is a Gaussian, but not
always. It includes the model that relates the parameters to the data and the
description of the noise.

• P (Mi) is called the prior. It is the probability of the model prior to the data DDD
being considered. This might take into account some previous experiment with
data DDD′ in which case it would be the posterior of that experiment P (Mi|DDD′).
It might also take into account that some models, or range of parameters, are
not possible in which case P (Mi) = 0 for some i. For example, the mass of a
planet cannot be negative, or Ωmatter cannot be greater than one. The prior is
often denoted by π(Mi) in the literature.

• P (DDD) =
∑

i P (DDD|Mi, I)P (Mi|I) is called the evidence. Note that the evidence
is not a function of Mi although it is implicitly dependent on the set of all models
considered. Since the data does not change, the evidence will be a constant for
a fixed set of models. We will sometimes denote the evidence as E(DDD).
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5.2 Updating the Information

A strict interpretation would hold that P (Mi|DDD, I) is the prior conditional probability.
It requires an additional step to interpret it as a ”new”, or posterior, probability for
the model. It could be written Pnew(Mi). This step is called Bayes’ rule although it
was first stated by Laplace. This process can be viewed as updating our knowledge
of the model after we take into account new data or information. This process is an
explicit prescription for fulfilling desiderata for probability introduced in section 1.2.

This process can be thought of as a kind of chain where every bit of new infor-
mation, and data, updates our knowledge progressively. Imagine two experiments
constrain the same model. The data sets are DDD1 and DDD2. The posteriors for the two
experiments are

p(M |DDD1) =
p(M)p(DDD1|M)

p(DDD1)
p(M |DDD2) =

p(M)p(DDD2|M)

p(DDD2)
(5.2.1)

Now let’s look at the posterior for both data sets,

p(M |DDD1,DDD2) =
p(M)p(DDD1,DDD2|M)

p(DDD1,DDD2)
(5.2.2)

=
p(M)p(DDD1|M)p(DDD2|DDD1,M)

p(DDD1,DDD2)
product rule (5.2.3)

Now if the data sets are statistically independent for the two experiments (experiment
two was not influenced by the results of experiment one) then p(DDD1,DDD2) = p(DDD1)p(DDD2)
and p(DDD2|DDD1,M) = p(DDD2|M) so

p(M |DDD1,DDD2) =
p(M)p(DDD1|M)p(DDD2|M)

p(DDD1)p(DDD2)
(5.2.4)

=

[
p(M)p(DDD1|M)

p(DDD1)

]
p(DDD2|M)

p(DDD2)
(5.2.5)

= p(M |DDD1)
p(DDD2|M)

p(DDD2)
using 5.2.1 (5.2.6)

So the posterior of experiment 1 can be used as a prior for experiment 2. Or it can
be the other way around. The order in which the experiments were done should not
matter.

Note that although experiments are usually taken to be independent they often
are not. Some experiments are done because a previous experiment showed promising
results or some experiments are extended in duration based on early results. This
can give rise to a form of confirmation bias.
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5.3 Parameter estimation

The most common use for Bayesian inference is parameter estimation or inference.
In this case, we have a model that describes the data that is a function of parameters
θ1, θ2, . . . . The different models discussed above are actually the same model with
different values. We will assume that these parameters take on a continuous range
of values, although this is not necessary. The sum in the evidence then becomes an
integral and the posterior is

P (θ1, θ2, . . . |DDD) =
L(DDD|θ1, θ2, . . . )p(θ1, θ2, . . . )[∫
dnθ L(DDD|θ1, θ2, . . . )p(θ1, θ2, . . . )

] (5.3.1)

The posterior expresses the probability of a set of parameter values being correct
given that the model is the correct one.

There is an objection you might have to this. In the continuous case, the prob-
ability of the data having some specific value is technically zero; L(DDD|θ1, θ2, . . . ) is
a density, L(DDD|θ1, θ2, . . . )dDDD is a probability. If we keep the dDDD’s you will see that
they cancel out of the posterior. This might not be a satisfying justification from a
formal perspective, but I will accept it here and not include the dDDD’s.

example: Poisson radiation

Let’s say you have a sample of water from a swamp next to a nuclear power plant. We
want to know the level of radioactive contamination in this water. Let there be N(t)
unstable nuclei in our sample. The rate of decay is dN

dt
= λN(t) where λ is the decay

constant. Let’s say we know what element we are dealing with and previous studies
have measured the decay constant to a high enough accuracy that we can consider it
a known constant. The average rate of decay products going into a Geiger counter is
then r = ΩλN(t) assuming one product per decay. Ω is the solid angle covered by
the Geiger counter from the perspective of the sample which we will also assume is
well enough measured that it can be considered known. So if we can measure r we
can easily find N(t). We will measure the number of counts in the Geiger counter
over a period of time that is small compared to 1/λ so that we can consider the
change in N(t) to be much smaller than N(t) (Uranium 235 has a decay constant of
3.12× 10−17 s−1 or 1/λ = 1.02 Gyr so this isn’t bad approximation in many cases).

Since each nucleus has a constant probability of decay the number of counts, n,
will be Poisson distributed (see section 3.7).

p(n|r) =
(rδt)n

n!
e−rδt (5.3.2)

where δt is the time over which the measurement is done. In this case, n is the data
and r is the parameter we would like to measure. This Poisson distribution is the
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likelihood. We take the prior on the rate to be uniform between 0 and some large
number rmax. We will see that the result will not depend on the value of rmax as long
as it is much larger than the actual rate,

p(r) =
Θ(0 < r < rmax)

rmax
. (5.3.3)

We know that p(n|r) is normalized to one for its sum over n from 0 to ∞, but to
normalize the posterior by calculating the evidence we need to integrate p(n|r)p(r)
over r which is a continuous variable.

E(n) =

∫ ∞
−∞

dr p(n|r)p(r) =
1

rmax

∫ rmax

0

dr
(rδt)n

n!
e−rδt (5.3.4)

=
δt−1

n!rmax

∫ δtrmax

0

dx xn e−x x = rδt

(5.3.5)

' δt−1

n!rmax

∫ ∞
0

dx xn e−x rmax � 1/δt

(5.3.6)

=
δt−1

n!rmax
Γ (n+ 1) (5.3.7)

=
1

δtrmax
because Γ (n+ 1) = n!.

(5.3.8)

So combining (5.3.2), ( 5.3.3), and (5.3.8) the posterior for the rate is

p(r|n) =
δt

n!
(δtr)ne−rδt (5.3.9)

The normalization of the prior, rmax, drops out. This posterior is shown in figure 5.1
for some choices of δt and n.

The average of this distribution is

〈r〉 =

∫ ∞
o

dr rp(r|n) =
δt

n!

∫ ∞
o

dr r(δtr)ne−rδt =
1

δtn!

∫ ∞
o

dx xn+1e−x (5.3.10)

=
(n+ 1)!

δtn!
=

(n+ 1)

δt
(5.3.11)

and the variance is

V ar [r] =
(n+ 1)

δt2
(5.3.12)
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One might have expected that the rate should be ∼ n/δt and that the standard
deviation should go like ∝

√
n. Why these extra 1s? We will see later that this small

difference in expectation value for small n is related to our choice of prior.
There is nothing particularly special about the average of the posterior. The mode

of the distribution can be found by finding the maximum of the log-posterior

∂

∂r
ln p(r|n) =

∂

∂r
([n ln(rδt)− rδt− ln(δt/n!)] (5.3.13)

=
n

r
− δt (5.3.14)

so the most likely value is what we might have expected,

rmode =
n

δt
. (5.3.15)

This could be called the maximum posterior estimate (MPE or sometimes MAP)
for r which in the case of a uniform prior is also the maximum likelihood estimator
(MLE).

example: estimating mean

Let’s say we have a very simple model for the alcohol content of wine coming out
of a winery. The model is that it is constant. We will call the concentration θ. We
know that our measurement apparatus has a Gaussian distributed error with standard
deviation σ. Say we measure one bottle and get d for the concentration. This kind
of model is often written

di = θ + ni, (5.3.16)

the data is some fixed value plus a noise component. The likelihood will be

L(d|θ) = G (d |θ, σ ) =
1√
2πσ

e−
(d−θ)2

2σ2 . (5.3.17)

Now we need a prior for θ. It is common to use a uniform prior in this kind of
problem. The argument for this being that without any measurements no particular
concentration should be considered more probable than any other. So the prior will
be

p(θ) =

{
1

θmax−θmin
θmin < θ < θmax

0 otherwise
(5.3.18)

= CΘ(θmin < θ < θmax) C ≡ 1

θmax − θmin

(5.3.19)
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Figure 5.1: Posteriors for the rate r given n counts in δt time units using uniform
and Jeffrey priors on the rate.
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You might be concerned that the parameters θmin and θmax might affect the posterior,
but we don’t know their values. Note that, like in the previous Poisson example, if
the likelihood constrains θ to a region that is much smaller than the range allowed by
p(θ) then it will not make any difference. Note also that the normalization of both
the likelihood and the prior appears in both the numerator and denominator of the
posterior so they drop out. If we take the range of the prior to be much larger than
σ, the uniform prior will drop out and not appear.

So in that case the posterior is equal to the likelihood, G (d |θ, σ ) which has a
mode at θ = d and the average is 〈θ〉 = d.

Now let’s consider a slightly more complicated case. We measure N bottles of
wine coming out of the factory getting d1, d2 . . . dn measurements, all with the same
σ. Since these are statistically independent measurements the likelihood will be

L(ddd|θ) = G (d1 |θ, σ )× G (d2 |θ, σ )× . . . (5.3.20)

=
1

(2π)n/2σn
exp

(
−1

2

∑
i

(di − θ)2

σ2

)
(5.3.21)

which will also be the posterior for a uniform prior. Making some changes,

L(ddd|θ) =
1

(2π)n/2σn
exp

(
− 1

2σ2

∑
i

(
d2
i − 2diθ + θ2

))
(5.3.22)

=
1

(2π)n/2σn
exp

(
− 1

2σ2

[∑
i

d2
i − 2

∑
i

diθ + nθ2

])
(5.3.23)

=
1

(2π)n/2σn
exp

(
− 1

2σ2

[
nd2 + n(θ − d̄)2 − n(d̄)2

])
(5.3.24)

=
1

(2π)n/2σn
exp

(
− n

2σ2

[
d2 − (d̄)2

])
exp

(
− n

2σ2
(θ − d̄)2

)
(5.3.25)

where

d ≡ 1

n

∑
i

di d2 ≡ 1

n

∑
i

d2
i . (5.3.26)

To find the evidence we need to integrate this over θ.

E(ddd) =
1

(2π)(n−1)/2σn−1
√
n

exp
(
− n

2σ2

[
d2 − (d̄)2

])
(5.3.27)

All the constant factors will drop out of the posterior. The only part that is de-
pendent on θ is proportional to a Gaussian. Since we already know the normalization
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Figure 5.2: The posterior distributions for the mean and variance based on a sample
of Gaussian distributed measurements with the number, sample mean and sample
variance given above each one.

of a Gaussian we don’t even need to do the integration in this case. The posterior is

P (θ|ddd) =

√
n

2πσ2
exp

(
− n

2σ2
(θ − d̄)2

)
= G

(
θ
∣∣d̄, σ2/n

)
. (5.3.28)

In section 4.1 we found that the sample mean of Gaussian random variables is Gaus-
sian distributed with a variance of σ2/n. We see here that this is also true for the
posterior distribution of the estimated mean. The mean is 〈θ〉 = d̄. No surprise here.

example: estimating mean and variance

Let’s make it a little more complicated. It does not seem reasonable that the alcohol
content is exactly constant in every bottle of wine so we should allow for it to change
randomly with an unknown variance. We still have a normally distributed error
in the measurements with standard deviation σn. In addition, we will assume the
distribution of the alcohol content among bottles is normally distributed with a mean
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of θ and a variance of σa. We would like to know the variance so that in the future
we can adjust the process to reduce the variance so that the product is more uniform.
Some customers have been complaining.

Each data point is some constant plus (or minus) some random value plus random
noise:

di = θ + xi + ni (5.3.29)

We can think of the likelihood as the probability that the actual alcohol content is
θ + x and then the probability of the alcohol level θ + x being measured as d. We
are not interested in the alcohol content of individual bottles so we sum, or integrate,
overall possible values of xi’s to eliminate them from the likelihood

L(ddd|θ, σ2
n, σ

2
a) =

∫ ∞
−∞

dnx P (ddd,xxx|θ, σ2
a) (5.3.30)

=

∫ ∞
−∞

dnx
[
G
(
d1

∣∣x1, σ
2
n

)
G
(
d2

∣∣x2, σ
2
n

)
. . .
] [
G
(
x1

∣∣θ, σ2
a

)
G
(
x2

∣∣θ, σ2
a

)
. . .
]

(5.3.31)

=

∫ ∞
−∞

dnx G
(
ddd
∣∣xxx, σ2

n

)
G
(
xxx
∣∣θ, σ2

a

)
(5.3.32)

= G
(
ddd
∣∣θ, σ2

n + σ2
a

)
(5.3.33)

where we are using the results of section 3.15 to combine Gaussian pdfs. This is
of course a consequence of the sum of normally distributed numbers being normally
distributed. This is the same likelihood as we got in the first example except σ2 is
replaced with σ2

n + σ2
a,

L(ddd|θ, σ2
n, σ

2
a) =

1√
(2π)n/2(σ2

n + σ2
a)
n

exp

−n
[
d2 − (d̄)2

]
2(σ2

n + σ2
a)

 exp

(
− n(θ − d̄)2

2(σ2
n + σ2

a)

)
(5.3.34)

To make things simpler let’s make the following substitutions

∆2 ≡ d2 − (d̄)2 (5.3.35)

σ2 ≡ σ2
n + σ2

a (5.3.36)

You can see that σn and σa enter into the likelihood only in the combination σ2
n +

σ2
a. As a result, you cannot constrain them separately unless the priors differentiate

between them. This is possible. For example, some previous calibration tests could
put constraints on σn.
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We will take the case where there are no previous constraints on either of the σ’s.
We can then use σ2 as a parameter instead of σ2

a. The likelihood is now

L(ddd|θ, σ2) =
1

(2π)n/2σn
exp

(
−n∆2

2σ2

)
exp

(
−n(θ − d̄)2

2σ2

)
(5.3.37)

We will assume a uniform prior for both θ and σ2 (we will talk later about using
a Jeffreys prior for σ2). Furthermore, the variance cannot be less than zero

P (θ, σ2) =
Θ(θmax < θ < θmin)

(θmax − θmin)

Θ(0 < σ2 < σ2
max)

σ2
max

(5.3.38)

= CΘ(θmax < θ < θmin)Θ(0 < σ2 < σ2
max) (5.3.39)

where C is going to represent the normalization constant.
Now we need to find the evidence by integrating the likelihood over the parameters.

E(ddd) = C
∫ σ2

max

0

dσ2

∫ θmax

θmin

dθ L(ddd|θ, σ2) (5.3.40)

' C
∫ σ2

max

0

dσ2

∫ ∞
−∞

dθ L(ddd|θ, σ2) (5.3.41)

=
C

(2π)n/2

∫ σ2
max

0

dσ2

∫ θmax

θmin

dθ
1

σn
exp

(
−n∆2

2σ2

)
exp

(
−n(θ − d̄)2

2σ2

)
(5.3.42)

=
C

(2π)(n−1)/2

∫ σ2
max

0

dσ2 1

σn−1
exp

(
−n∆2

2σ2

)
(5.3.43)

In doing this we have taken the range of the θ integral to go to infinity. This is
justifiable if |θmax| = |θmin| � σ. We don’t know this ahead of time, but it can be
justified in retrospect once constraints on σ are found. This can be considered a
technical flaw that we will get back to later.

Now let’s make the change of variables to

y =

√
n∆2

2σ2
so dσ2 =

n∆2

y3
dy (5.3.44)

E(ddd) =
2C

(2π)(n−1)/2

(
n∆2

2

) 3−n
2
∫ ∞√

n∆2

2σ2
max

dy yn−4e−y
2

(5.3.45)

' 2C
(2π)(n−1)/2

(
n∆2

2

) 3−n
2
∫ ∞

0

dy yn−4e−y
2

(5.3.46)

=
C

(2π)(n−1)/2

(
n∆2

2

) 3−n
2

Γ

(
n− 3

2

)
(5.3.47)
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Here we assumed that σ2
max � n∆2 in the integration limits.

We can now construct the posterior. The constant C in the prior and the evidence
will cancel. We can then take the limits to go to infinity or at least so large that there
is no need to put the Θ() parts of the prior in the posterior because the likelihood
will constrain the parameters to be much less than this value. The posterior is

P (θ, σ2|ddd) =
1√

2πΓ
(
n−3

2

) (∆2

2

)n−3
2 ( n

σ2

)n
2 1

n
exp

(
−n∆2

2σ2

)
exp

(
−n(θ − d̄)2

2σ2

)
(5.3.48)

This posterior is plotted in figure 5.2 for some values of n, d̄ and ∆2.
The mode of the posterior can be found by setting its derivatives with respect to

the parameters to zero. It is often more convenient to take the log of the posterior
first. Since the log is a monotonic function its maximum will be at the same place.

lnP (θ, σ2|ddd) = −n
2

ln(σ2)− n

2σ2

[
∆2 + (θ − d̄)2

]
+ constant terms (5.3.49)

∂

∂θ
lnP (θ, σ2|ddd) = − n

σ2
(θ − d̄) (5.3.50)

∂

∂σ2
lnP (θ, σ2|ddd) =

n

2σ2

(
−1 +

∆2

σ2
+

(θ − d̄)2

σ2

)
(5.3.51)

These are simultaneously zero at θ = d̄, σ2 = ∆2 = d2 − d̄2. These are almost, but
not quite what we would have gotten with the arithmetic mean and variance we saw
before in chapter 4. Specifically, the (N − 1)−1 factor that we saw was needed to
make the estimator unbiased has been replaced with N−1 so the MAP is biased in
this case.

I chose to use σ2 as a parameter, but I could just as well have chosen σ or
√
σ as

a parameter instead. The likelihoods would all be the same, but the evidence would
be different since it would be an integral over a different variable. Since, by the chain
rule,

∂

∂σ2
lnP (θ, σ2|ddd) =

1

2σ

∂

∂σ
lnP (θ, σ|ddd) =

1

4σ3

∂

∂σ1/2
lnP (θ, σ1/2|ddd) (5.3.52)

they will all be zero at the same spot the maximum of the posterior will give the same
value. However, the mean parameter values will not be the same, 〈σ2〉 6= 〈σ〉2, and
the shape of the posterior constraint contours will not be the same.

Problem 26. You have a series of uncorrelated measurements ti. You have reason
to believe that they are exponentially distributed, i.e.

p(t) =

{
1
τ
e−

t
τ t ≥ 0

0 t < 0
(5.3.53)
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1. What is the posterior for τ with a uniform prior?

2. What is the maximum posterior τ?

5.4 Marginalization

The situation often comes up where there are parameters in the physical or statistical
model that we are not interested in. For example, we may not know what the variance
is, but we are only interested in the mean. Or we may want to make a statement
about the constraints on one or two parameters that are independent of what values
all the other parameters have. In the Bayesian context these parameters that we
are not interested in are called nuisance parameters. To remove them from the
posterior we marginalize over them.

Let’s say parameters α1, α2, . . . are the parameters we are interested in, and pa-
rameters β1, β2, . . . are the ones we aren’t interested in.

P (α1, α2, . . . |DDD) =

∫ ∞
−∞

dβ1

∫ ∞
−∞

dβ2 . . . P (α1, α2, . . . , β1, β2, . . . |DDD)

=

∫∞
−∞ dβ1

∫∞
−∞ dβ2 . . . P (DDD|α1, α2, . . . , β1, β2, . . . )P (α1, α2, . . . , β1, β2, . . . )

E(DDD)
(5.4.1)

example: the mean without the variance

As a simple example let’s say we have the posterior (5.3.48). We are interested in the
parameter θ, but we are not interested in the ”noise” parameter σ2. Let’s marginalize
over σ2 so we have the distribution of θ alone.

We can ignore all the factors that don’t have θ or σ2 in them for the moment
because they are just a normalization and we can recover the normalization at the
end by integrating over θ. Let’s make the substitution A = n∆2 + n(θ− d̄)2 in which



88 CHAPTER 5. THE BAYESIAN METHOD

case the relevant parts of the posterior are

P (θ|∆2, d̄) =

∫ ∞
0

dσ2 P (θ, σ2|∆2, d̄) (5.4.2)

∝
∫ ∞

0

dσ2 e
− A

2σ2

σn
(5.4.3)

∝ −2

∫ 0

∞
dx xn−3e−

A
2
x2

x =
1

σ
(5.4.4)

∝ 2
n−3

2 A−(n−2
2 )Γ

(
n− 2

2

)
integral in Appendix A.4 (5.4.5)

∝
[
∆2 +

(
θ − d̄

)2
] 2−n

2
(5.4.6)

∝

[
1 +

(
θ − d̄

)2

∆2

] 2−n
2

(5.4.7)

If we compare this to the t-distribution ((??) in section 3.17) we recognize that
x = |θ − d̄|

√
n− 3/∆ is t-distribution with ν = n − 3 degrees of freedom. We can

recover the normalization constant by comparing this to the standard form

P (θ|∆2, d̄) =
Γ
(
n−2

2

)√
(n− 3)π Γ

(
n−3

2

) [1 +
(θ − d̄)2

∆2

] 2−n
2

(5.4.8)

Because this is symmetric about d̄ the mean is 〈θ〉 = d̄ and so is the mode. Since the
variance of a t-distribution is ν

ν−2
and ν = n− 3 in this case

〈
x2
〉

= (n− 3)

〈
(θ − d̄)2

〉
∆2

=
ν

ν − 2
=
n− 3

n− 5
(5.4.9)

so 〈
(θ − d̄)2

〉
=

∆2

(n− 5)
. (5.4.10)

From this example, we learn that if we model a series of observations to be inde-
pendent and normally distributed with the same mean and variance and we give the
mean and variance uniform priors the posterior distribution of the model mean, θ,
(not to be confused conceptually with the sample mean d̄) will be t-distributed. As
was discussed in section 4.3, the distribution of t = (x̄ − µ)

√
n/S2 is t-distributed

with ν = n− 1 degrees of freedom. The number of degrees of freedom is different!



5.5. CHOICE OF PRIOR 89

5.5 Choice of prior

As its name suggests, the prior expresses the information one had about the param-
eters before using the current data to constrain them. This information might come
from a previous experiment or observation in which case the prior would be the pos-
terior of that experiment. The prior can also express the theoretically allowed range
of a parameter. For example, if mass or flux is a parameter the prior should be zero
for negative values. Usually, there are some boundaries one can put on the value of
a parameter at least on theoretical grounds - the mass of a planet cannot be greater
than a solar mass.

For the Bayesian parameter estimation problem the actual prior bounds on the
parameters are often unimportant. This is because the likelihood will be so small
at the boundaries of parameter space that they will not affect the integral in the
evidence and the posterior will be zero at these points. In other cases, the posterior
might be significant at the theoretically imposed boundaries to parameter space. For
example, constraints on cosmological parameters from galaxy surveys or type Ia SNe
often do not by themselves rule out the possibility that the average density of the
Universe is negative (Ωmatter < 0).

When no previous experiment, or bounds of the parameters, provide a prior dis-
tribution it is common to use a non-informative prior. This prior is meant to
influence the posterior as little as possible; let the data constrain the parameters. In-
tuitively you might expect a uniform prior to fulfill this purpose. This is the prior
that is constant over a region of parameter space and zero outside of it. It has the
appearance of being unprejudiced in the sense that it will not favor one parameter
value over another without the data supporting it. However, this is not always the
best choice for a non-informative prior. To see this suppose that the prior is uniform
for parameter α. The posterior will be proportional to the likelihood. Now suppose
you decide to use a different parameter β = f(α) where f(α) is smooth and invertible.
An example is using the parameters σ or σ2 with a Gaussian likelihood. The prior
will become proportional to ( df

dα
)−1 which is not constant unless f(α) is linear. But

the parameters α and β should be equivalent in some sense. One would expect that
the posterior probability between α1 and α2 is the same as that between β1 = f(α1)
and β2 = f(α2), but this will not be the case if f(α) is nonlinear and the prior is
uniform. With this in mind, the uniform prior does not seem so nonprejudicial. It
picks out one parameterization which might be an arbitrary choice. Another example
of this is the choice of whether to use frequency or wavelength (or period) in some
problems. There is no natural reason to choose either one.

To solve this apparent problem Jeffreys (?) suggests the prior

p(θθθ) ∝
√

detFFF(θθθ) (5.5.1)
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where FFF(θθθ) is the Fisher information matrix. The Fisher matrix will be intro-
duced in chapter 12. We will see there that the Fisher matrix transforms under
transformations of the parameters in such a way as to make this prior invariant. For
now, we will concentrate on two special, but common, cases.

The Jeffreys prior takes simple forms in two particular cases. A location parameter,
µ, is one where the cumulative distribution can be written

F (x|µ) = F (x− µ|1) (5.5.2)

which implies for the pdf p(x|µ) = p(x− µ|1). In this case, the Fisher matrix is not
a function of µ, and the Jeffreys prior is a uniform distribution. An example is the
mean of a Gaussian distribution. A location parameter can be shifted by a constant
without fundamentally changing the problem. Other examples might, depending on
the circumstances, be the position of a planet or the velocity of a galaxy.

A scale parameter, s, is one for which

F (x|s) = F
( x
s

∣∣∣ 1) or p(x|s) =
1

s
p
( x
s

∣∣∣ 1) (5.5.3)

A scale parameter cannot be less than zero. Examples are the variance σ2 or, in some
case, energy and mass. In this case, the Fisher information is proportional to s−2 so
Jeffreys’ prior is ∝ 1/s. It is common in physics to call this prior a Jeffreys prior
although it is really a special case. More specifically,

p(α) =
1

ln(αmax/αmin)

{
1/α αmin < α < αmax

0 otherwise
(5.5.4)

This prior gives equal weight to equal logarithmic ranges of α (d lnα = dα/α). If
parameter, α, is replaced with parameter β = bαγ for any constants b and γ this prior
will not change the posterior since

dβ

β
= d ln(bαγ) = γ d lnα ∝ dα

α
(5.5.5)

The constant of proportionality γ will cancel out because it appears in the evidence
as well.

The normalization of the uniform 1/s prior is infinite if the range is extended to
0 < α <∞. Similarly, the normalization of the uniform prior is formally zero for the
range −∞ < α <∞. Despite this, these ranges are routinely used when the posterior
(likelihood times prior) has a well-defined integral. These are examples of improper
prior distributions that are not valid distributions by themselves, but make sense
in a posterior because the normalization appears in the prior and evidence and thus
cancels out of the posterior
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Many researchers feel that the arbitrariness inherent in choosing a prior is a serious
flaw in the Bayesian approach. This criticism, I think, only makes sense when the prior
is not expressing the results of some previous experiment. Frequentist methods do not
have a general way of including prior information which is an important advantage
to the Bayesian method. In general, if the data strongly constrains the parameters
beyond what was previously known the choice of prior should not strongly affect the
resulting posterior; the likelihood will do the constraining by itself.

example: Jeffreys prior

Going back to the alcohol in wine example, we can now recognize σ2 as a scale
parameter and θ as a location parameter. Previously we used a uniform prior for σ2.
Let’s see how things change if we use Jeffreys prior for σ2. The posterior (5.3.48) will
change to

P (θ, σ2|ddd) ∝
(

1

σ2

)
1

σn
exp

(
−n∆2

2σ2

)
exp

(
−n(θ − d̄)2

2σ2

)
(5.5.6)

where the σ−2 factor is from the prior. By integrating this we can determine the
normalization

P (θ, σ2|ddd) =
nn/2√

2nπΓ
(
n−1

2

) (∆2

2

)n−1
2 1

σn+2
exp

(
−n∆2

2σ2

)
exp

(
−n(θ − d̄)2

2σ2

)
(5.5.7)

We can then marginalize over σ2 as before to get the marginalized distribution for θ

P (θ|ddd) =
1√
π

Γ
(
n
2

)
Γ
(
n−1

2

) 1

∆

[
1 +

(θ − d̄)2

∆2

]−n
2

(5.5.8)

This is again a t-distribution, but now it is of ν = n − 1 degrees of freedom. Recall
that with the uniform prior we got a t-distribution of n− 3 degrees of freedom. From
section 4.3 we know that the t = (x̄−µ)

√
n/s2 is t-distributed with ν = n−1 degrees

of freedom. So in a way, this prior agrees with the frequentist result although keep
in mind that these are really different quantities. t is a function of the data and θ is
a model parameter so there is no fundamental reason why their distributions should
be the same.

Note also that as n gets bigger the difference between n − 1 and n − 3 gets less
significant and the difference between the posterior distributions for uniform and
Jeffreys becomes insignificant. It is only when the likelihood is a weak constraint on
the parameters relative to the prior that the prior will have a strong effect on the
posterior.
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example: radiation with Jeffreys prior

Going back to the example given in section 5.3 where we found the posterior for a
rate of radioactive decay. We might now recognize the rate as a scale parameter
and prefer to use Jeffreys prior rather than the uniform prior we used before. The
posterior, after renormalizing, will go from (5.3.9) to 2

p(r|n) =
δt

(n− 1)!
(δtr)n−1e−rδt (5.5.9)

The mean and variance of this distribution are more in agreement with frequentist
expectations

〈r〉 =
n

δt
V ar [r] =

n

δt2
(5.5.10)

Again in the limit of large n, the posteriors are the same for the two choices of prior.
Interestingly the maximum posterior value in this case is not n

δt
but

rmode =
n− 1

δt
(5.5.11)

Figure 5.1 shows the posteriors for the rate r with some different values for n, δt,
and for the uniform and Jeffrey priors. You can see how as n increases the choice of
prior becomes less important.

5.6 Bayesian Relativity

An important point about Bayesian parameter estimation is that Bayesian analysis
is always relative. You always compare one model to another or a class of others.
A corollary to this is: You will always get an answer even when the model is
completely wrong. The posterior for a model that fits the data very badly will often
look just fine. There will usually be a set of parameters that fit the data best, but that
does not mean they fit the data well. Although Bayesian model selection, covered
next, purports to go some way toward solving this, it is still relative. Frequentist
hypothesis testing which we will cover in a later chapter does a much more satisfying
job of answering the question of whether the model is a good fit to the data in a more
general sense.

2According to equation (5.5.1), the Jeffreys prior in this case is actually ∝ r−1/2 and not ∝ r−1,
i.e. r is not a true scale parameter. It is left as an exercise to work out how this affects the problem.
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5.7 Calculating the evidence

It is often difficult or impossible to obtain an analytic expression for the evidence,
the normalization of the posterior. In practice, it is usually calculated numerically by
integrating the likelihood times the prior over the parameter space. This is usually a
simple task if there are only 1, 2, or 3 parameters. One can simply grid the parameter
space or use a standard integration routine.

Note that if one is doing parameter estimation one only needs the posterior and
any factors in the prior and likelihood that do not depend on the parameters will
cancel out. For this reason, it is often not necessary to normalize these probabilities
individually, just the product of them. This can save some work, especially when the
likelihood or prior is something strange that you don’t know the normalization of.

When the dimension of the parameter space is larger, >∼ 3, numerical integration
can be much more difficult. We will return to this problem later when we talk about
Monte Carlo techniques for Bayesian analysis.

5.8 Example: luminosity function

Let’s consider the problem of measuring the luminosity function from a data set
of stars (or galaxies or AGN or supernovae, etc.) luminosities. This is the same
problem as finding the spectral energy distribution (SED) when individual photons
or particles are measured. This might be the case of astronomical measurements in
the x-ray, γ-ray, or high-energy cosmic rays. It would also be the case for a particle
physics experiment where particle energies are detected. I will call them magnitudes,
but everything would be the same if they were energies or something else.

First, we need to parameterize the luminosity function. Initially, we will consider
the simple case of a power-law

f(m) =
(1 + α)[

mα+1
max −mα+1

min

] mα (5.8.1)

where α will be the parameter we want to know. The luminosity function could be
more complicated like a ”broken power-law” where there would be a ”break” at some
luminosity and a second power-law below or above this break. For now, we will keep
it simple.

5.8.1 no noise

Let’s say there is no noise in the measurement of each individual luminosity, or that
it is so small that it will not be important (”small” will be made more precise in the
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Figure 5.3: Bayesian constraint on the slope of the luminosity function or SED. A
histogram of the luminosities is given above. Below is the posterior for the slope α.
50 data points were generated from a power-law with α = −2.2.
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next section). The luminosity function (or the SED) is interpreted as proportional to
the probability of an object having the magnitude m so the likelihood will be

L({m}|α) =
∏
i

f(mi) =
(1 + α)N[

mα+1
max −mα+1

min

]N N∏
i

mα
i =

(1 + α)N[
mα+1
max −mα+1

min

]N
(

N∏
i

mi

)α

(5.8.2)

Note that the normalization of the luminosity function has α in it and we want
to find α, so we cannot drop the normalization because it will not drop out of the
posterior. Let’s use a uniform prior on α. To avoid numerical problems it is useful to
calculate the log of the posterior

lnP (α|{mi}) = N ln(1 + α)−N ln
[
mα+1
max −mα+1

min

]
+ α ln

(
N∏
i

mi

)
− ln E({mi})

(5.8.3)

It is not necessary to calculate the evidence analytically. We can calculate the first
three terms for a range of α then take exp() of it and then normalize it numerically
to 1. This is shown in figure 5.3 for a simulated data set.

Note that the range of m, mmin to mmax does not drop out. mmax should be as
high as is detectable in the observations. We can take it to be infinite if appropriate.
mmin is the minimum luminosity that is detectable. There may be objects that are
not detected, but we can’t see them so they aren’t included. The likelihood takes into
account not only what objects are measured, but also the regions where no objects
are measured. Extending the limits into a region where they cannot be measured
would result in an incorrect constraint.

Problem 27. Assume that α is less than -1 and take mmax to be infinite. Find
the maximum likelihood estimate for α.

5.8.2 with noise

So far we have taken the measurements of the luminosities to be perfect. Now we
will add some noise to our measurement. Let’s look at the measurement of a single
star first. The joint probability that a star will have magnitude m and an observed
magnitude of mob is

p(m,mob) = p(m)p(mob|m) (5.8.4)
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where p(mob|m) is the probability of measuring a star of magnitude m to have a
magnitude mob. Let’s take this to be a Gaussian error

p(mob|m) =
1√
2πσ

e−
(mob−m)2

2σ2 . (5.8.5)

Let’s just rename p(m) as f(m) to prevent some confusion. f(m) is the intrinsic
luminosity function. We can approximate this joint probability by expanding the log
of f(x)

p(mob,m) ∝ f(m)e−
(mob−m)2

2σ2 (5.8.6)

= exp

[
ln(f(m))− (mob −m)2

2σ2

]
(5.8.7)

= exp

[
ln(f(mob)) +

∂ ln f

∂m

∣∣∣∣
m=mob

(m−mob) +
∂2 ln f

∂m2

∣∣∣∣
m=mob

(m−mob)
2 − (mob −m)2

2σ2
+ . . .

]
(5.8.8)

= f(mob) exp

[
∂ ln f

∂m

∣∣∣∣
m=mob

(m−mob) +
∂2 ln f

∂m2

∣∣∣∣
m=mob

(m−mob)
2 − (mob −m)2

2σ2
+ . . .

]
(5.8.9)

= f(mob) exp

[
α

(m−mob)

mob

− β (m−mob)
2

m2
ob

− (mob −m)2

2σ2
+ . . .

]
(5.8.10)

where

α(mob) ≡
∂ ln f

∂ lnm

∣∣∣∣
m=mob

β(mob) ≡
(
∂ ln f

∂ lnm
− ∂2 ln f

∂ lnm2

)
m=mob

(5.8.11)

Note that if the intrinsic luminosity function is a power law then β = α.
Now let’s find the maximum of the posterior for the true magnitude of the

star. This is the most likely value for m given our data mob. Since p(m|mob) =
p(m)p(mob|m)/p(mob) = p(mob,m)/p(mob),

∂

∂m
ln p(m|mob) =

∂

∂m
ln p(m,mob)−

∂

∂m
ln p(mob) (5.8.12)

' α

mob

− 2β

m2
ob

(m−mob)−
1

σ2
(m−mob) (5.8.13)

So the maximum posterior is

m̂ ' mob +
ασ2mob

(m2
o + 2βσ2)

(5.8.14)
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So the most probable real magnitude is not the measured value mob! In astronomy,
this is called Eddington bias although Eddington did not derive it in this Bayesian
context and it has probably been derived by many people in many different fields.
(Also, some might say bias is not a Bayesian concept.)

Leaving the Θ(mmin < mob < mmax) factor out, the observed luminosity function
will be

p(mob) =

∫ ∞
−∞

dm p(m,mob) (5.8.15)

=

∫ ∞
−∞

dm p(m)p(mob|m) (5.8.16)

=
1√
2πσ

∫ ∞
−∞

dm f(m)e−
(mob−m)2

2σ2 (5.8.17)

∝ f(mob)√
2πσ

∫ ∞
−∞

dm exp

[
α

(m−mob)

mob

− β (m−mob)
2

m2
ob

− (mob −m)2

2σ2

]
(5.8.18)

∝ f(mob)√
2πσ

exp

[
α2σ2

2(m2
ob + 2βσ2)

] ∫ ∞
−∞

dm exp

[
−m

2
ob + 2βσ2

2σ2m2
ob

(
m−mob −

αmobσ
2

m2
ob + 2βσ2

)2
]

(5.8.19)

∝ f(mob)√
1 + 2βσ2

m2
ob

exp

[
α2σ2

2(m2
ob + 2βσ2)

]
(5.8.20)

which is not the true luminosity function! This luminosity function can be used in
place of the intrinsic luminosity function that was used in the previous section when
the noise in the measurements is significant. f(m) may have some internal parameters
besides the power-law slope. You can see that when the noise is very small σ ∼ 0 this
becomes the intrinsic luminosity function as it should.

This same treatment can be applied to the energy spectrum of detected particles
or photons or the brightnesses of stars instead of the magnitudes. In these cases,
there is a lower bound on the intrinsic value of zero. The integrals above will go from
0 to ∞ rather than −∞ to ∞ and the result will have some erf() functions in it, but
will be essentially the same.

intrinsic magnitudes

So far in this example we have dealt with apparent magnitudes, or energies, etc.,
and wanted a model for their distribution. Now say we are studying the brightness
of galaxies or stars and we have distance information for each object. We want to
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find the absolute magnitude or luminosity distribution, φ(L|θθθ) where θθθ are some
parameters. The probability of simultaneously having an intrinsic luminosity, L, an
observed brightness l, a true radial distance R, and an observed radial distance r can
be broken apart into different factors using the product rule:

p(L, l, R, r|θθθ) = p(L|θθθ)p(l, R, r|L,θθθ) (5.8.21)

= p(L|θθθ)p(R|L,θθθ)p(l, r|R,L,θθθ) (5.8.22)

= p(L|θθθ)p(R|L,θθθ)p(l|R,L,θθθ)p(r|l, R, L,θθθ) (5.8.23)

= p(L|θθθ)p(R|L)p(l|R,L)p(r|l, R, L) (5.8.24)

In the last line, we were able to remove the θθθ dependence because if L is specified
the parameters of the luminosity function are irrelevant so the probabilities cannot
depend on them. We can recognize p(L|θθθ) as being the intrinsic luminosity function
φ(L|θθθ).

p(R|L) is the probability that the object will be at radius R given no other infor-
mation than the luminosity. If we assume that a priori the probability of a galaxy is
uniform in space then this will be proportional to the partial derivative of the volume
with respect to R,

p(R|L)dR ∝ ∂V

∂R
dR (5.8.25)

For flat static space, this gives a normalized pdf of p(R|L) = 3(R/Rmax)
2R−1

max, but
at cosmological distances, we would have to differentiate between luminosity distance
and angular size distance. Depending on which R is used the volume element might
be a different function of it. We will assume here that this is not the case.

The distribution p(r|l, R, L) represents the error in the measurement of the dis-
tance r. This might depend on the brightness, l because the measurement might be
noisier for low brightness objects. It might also depend on some intrinsic property of
the source that is related to L. But we will assume it has none of these dependencies
so p(r|l, R, L) ' p(r|R).

p(l|R,L) contains the error in the measurement of the brightness and the rela-
tionship between R, L, and the brightness. If R is the luminosity distance then we
might expect

p(l|R,L) = p

(
l − L

4πR2

∣∣∣∣σ2
l

)
(5.8.26)

where σ2
l is a parameter quantifying the noise level, perhaps the variance of Gaussian

noise.
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The likelihood for one object is

L(θθθ|l, r) = p(l, r|θθθ) =

∫
dL

∫
dR p(L, l, R, r|θθθ) (5.8.27)

=

∫
dL φ(L|θθθ)

∫
dR p(R|L)p(l|R,L)p(r|l, R, L) (5.8.28)

'
∫
dL φ(L|θθθ)

∫
dR p(R)p

(
l − L

4πR2

∣∣∣∣σ2
l

)
p(r|R) (5.8.29)

' 3

∫
dR

Rmax

(
R

Rmax

)2

p(r|R)

∫
dL φ(L|θθθ)p

(
l − L

4πR2

∣∣∣∣σ2
l

)
.

(5.8.30)

The posterior for the data set is then

p(θθθ|l, r) =

∏
i L(θθθ|li, ri)π(θθθ)∫

dθθθ [
∏

i L(θθθ|li, ri)π(θθθ)]
. (5.8.31)

Note that if the noise in the distance measurement were zero, i.e. p(r|R) '
δD(r − R) then R2 part in (5.8.30) would just be a pre-factor that is not dependent
on the parameters θθθ. This pre-factor would also be in the evidence and so would
drop out of the posterior so we would be back to essentially the same case as before,
noise in l convolved with the luminosity function. When there is noise in the distance
measurement this extra factor expresses the fact that you are more likely to underes-
timate the radial distance than overestimate it even if the distribution of your errors
in r is symmetric around R. There are more objects with larger R so more of them
”scatter” down into a fixed r bin. This is another form of Eddington bias.

Note that the distribution of errors need not be the same for every object. It
might change with the type of object, position on the sky, or the time at which the
measurement was taken.

5.8.3 selection effects

A selection is a cut or diminishment in the probability of observing objects within
a range of observable values usually caused by instrumental or observational effects.
This can be quantified with a selection function which is the probability of observ-
ing an event given that it did occur. The selection is a function of observables and
not model parameters.

In our example, we will denote the selection function by S(l, r). The likelihood
will need to be modified because simply multiplying it by S(l, r) would result in a
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likelihood that is not normalized properly. The properly normalized likelihood is

Ls(θθθ|l, r) = p(l, r|θθθ, S) =
p(l, r|θθθ)S(l, r)∫

dl
∫
dr p(l, r|θθθ)S(l, r)

(5.8.32)

This is now a different function of the parameters.

In the case of a simple cut or truncation, the selection function is 1 for observ-
able cases and zero for non-observable cases. In this case, the numerator of (5.8.32)
will not be modified because there can not be any observed cases that violate the
selection. However the denominator will be changed, and the limits of integration
will be different, so the posterior will be different. This fact is easily missed.

Consider the case where there is no error in the distance measurement and the
brightness measurement. We can simplify the pre-selection likelihood (5.8.30)

p(l, r|θθθ) =

∫
dR

Rmax

3

(
R

Rmax

)2

δD(r −R)

∫
dL φ(L|θθθ)δD

(
l − L

4πR2

)
(5.8.33)

=
3

Rmax

(
r

Rmax

)2 ∫
dL φ(L|θθθ)δD

(
l − L

4πr2

)
(5.8.34)

=
3

Rmax

(
r

Rmax

)2 ∫
dL φ(4πr2l|θθθ)δD

(
l − L

4πr2

)
(5.8.35)

=

(
12π

R3
max

)
r4φ(4πr2l|θθθ) (5.8.36)

In the last step, I changed variables to x = L/(4πr2) and then integrated over the
delta function. We integrate this with the selection function to find the normalization∫ Rmax

0

dr

∫ ∞
0

dl r4φ(4πr2l|θθθ)S(l) =

∫ Rmax

0

dr

∫ ∞
lmin

dl r4φ(4πr2l|θθθ) (5.8.37)

=
1

4π

∫ Rmax

0

dr r2

∫ ∞
4πr2lmin

dL φ(L|θθθ) (5.8.38)

=
1

4π

∫ Rmax

0

dr r2

∫ ∞
0

dL φ(L|θθθ)Θ(L > 4πr2lmin)

(5.8.39)

=
1

4π

∫ ∞
0

dL φ(L|θθθ)
∫ √L/(4πlmin)

0

dr r2 (5.8.40)

=
1

4π

1

3(4πlmax)3/2

∫ ∞
0

dL L3/2φ(L|θθθ) (5.8.41)
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So the likelihood is

L({rili}|θθθ) =
(
3(4πlmax)

3/2
)n ∏

i r
4
i φ(4πr2

i li|θθθ)[∫∞
0
dL L3/2φ(L|θθθ)

]n (5.8.42)

The constants and r2
i factors will cancel out of the posterior giving, with uniform

priors,

p(θθθ|{ri, li}) = C
∏

i φ(4πr2
i li|θθθ)[∫∞

0
dL L3/2φ(L|θθθ)

]n (5.8.43)

where the normalization constant is

C−1 =

∫
dθθθ

∏
i φ(4πr2

i li|θθθ)[∫∞
0
dL L3/2φ(L|θθθ)

]n (5.8.44)

The difference in the posterior from what it would be were there no noise and no
selection function (the numerator) is a manifestation of Malmquist bias - high
luminosity objects are sampled from a larger volume when there is a magnitude
limited selection. Interestingly the actual brightness limit does not appear in the
posterior.

The most commonly used model for the luminosity function of galaxies is the
Schechter function,

φ(L|α,M∗)dL = φ∗

(
L

L∗

)α
eL/L∗

dL

L∗
(5.8.45)

In other contexts with α > −1, this is known as a gamma distribution. For galaxies
α ∼ −1.25 in which case normalizing the function is problematic because it diverges
at L = 0, but the normalization in (5.8.43), with the brightness limit, is well defined.
In actual cases, the selection might be quite a bit more complicated than a simple
brightness or magnitude cut.

The selection function might also depend on surface brightness and color for exam-
ple. Also within the sampled volume the galaxies might have different redshifts so a
single observed band will correspond to different intrinsic wavelengths so k-corrections
must be taken into account which is generally dependent on the intrinsic luminosity.
Observation times and weather might make the selection dependent on the position
on the sky as well.

Problem 28. You have some data from a solar neutrino detector. The detector can
detect electron neutrinos, νe, muon neutrinos, νµ and tau neutrinos, ντ , but can not
distinguish between νµ and ντ . You have counts of each over several years - nνe and
n−νe = nνµ + nντ . The efficiency of detection is different for each kind of neutrino
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because of the different interaction cross-sections and different ways of identifying
them. You have calculated that you expect to detect fractions of the fluxes Se and S−e
relative to the true fluxes. What is the posterior for the probability that a neutrino
coming from the sun will be each of the flavors? Or, in other words, what is the
posterior for the relative flux of the neutrino flavors?

Problem 29. You are given the job of measuring the mass function of galaxy
clusters, f(M |θθθ). There is a selection effect that prevents us from detecting any
clusters with masses below Mmin. The mass function is modeled with the function

f(M |α,M∗) ∝
(
M

M∗

)α
e−M/M∗ (5.8.46)

Make the approximation that the individual masses are very well measured. Find the
likelihood function in this case for n measured clusters.

5.8.4 censoring

Related to selection or truncation is the concept of censoring. This is the case where
only an upper or lower limit for the measured quantity is known. This is a common
case in astronomy. For example, one might have a population of galaxies that are
selected in the visible, but you are interested in the distribution of radio emission
from them. Some galaxies might have only an upper limit on their radio flux. This
is different from selection because these objects are known to exist and are included
in the data set. Note that this is not the same as missing data, i.e. cases where the
galaxy was not observed with a radio telescope.

Censored data should not be ignored and can be incorporated into the likelihood
function in a simple way. If the proposed distribution of radio fluxes is p(f |θθθ) then the
probability of the flux being below the threshold fmax is the cumulative distribution

F (fmax|θθθ) =

∫ fmax

−∞
df p(f |θθθ) (5.8.47)

so this is the factor representing an upper limit that should be used in the likelihood.
The limit fmax does not need to be the same for each object. It could depend on
observation time or weather conditions for example.

In this way detections and non-detections provide information. The likelihood
is constrained even when there are no detections at all. The treatment of censored
data is often called survival analysis. This refers to its use in epidemiology where
some individuals survive the trial period and thus there is a lower limit on their
lifespan. Similar situations arise in astronomy when a finite observation period might
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be smaller than the period of a variable star, the orbital period of a planet, or the
time delay of a gravitational lens.

Problem 30. Repeat the calculations of section 5.8.2 but for an energy spectrum
with a lower bound of zero. Find the observed spectrum and the posterior for an
intrinsic power-law spectrum.

Problem 31. Normally in astronomy, the normalization of the luminosity function
is given in objects per volume, for example, galaxies per Mpc3, or per area on the sky.
How would you include in the posterior found in section 5.8.1 a constraint on the
normalization of the luminosity function?
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Chapter 6

Linear models, least-squares and
regression

Here we will look at a particular kind of model for the data that is very common, a
linear model. By ”linear” it is meant that the expression for the measured quantity
is linear in the parameters of the model, not the data itself. Fitting such a model is
sometimes referred to as linear regression for historical reasons. This type of model
can be applied to a large class of problems and because of its simplicity, some quite
general solutions can be derived.

A linear model for the data point, di, is of the form

di =
∑
α

Miαθα + ni or ddd = MMMθθθ + nnn (6.0.1)

where nnn is the noise, θθθ are the parameters of the model and MMM is a fixed matrix.
The simplest case is fitting a line to data, but linear models cover a much broader
class of problems. Miα could be a point spread function (psf) and θθθ an image to be
reconstructed. Or the parameters could be the coefficients of the Fourier modes that
describe the data in which case the discrete Fourier transform would be contained in
MMM . Related to this, ddd could be the data from a radio telescope in visibility-space and
θθθ the image in angular (or configuration) space. It is also true that some nonlinear
models can be transformed into linear ones by transforming the data. For example,
di = Axθi implies ln(di) = B + ln(xi)θ so yi = ln(di) has a linear relationship with θ,
although in these cases the noise in ln(di) will not be additive if it was for di. Even
in these cases, some insight into the problem can be gained from linear modeling.

105
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6.1 linear model fitting with a Gaussian likelihood

The simplest case of linear model fitting is fitting a line to data that has one in-
dependent variable or predictor variable and one dependent variable. The
independent variable predicts the value of the dependent variable and has a small
enough error that it can be considered perfectly measured. For example, the in-
dependent variable might be the time and the dependent variable be sea levels or
temperature.

Somewhat counterintuitively, I find this subject easiest to understand if you start
from the most general problem and then look at special cases rather than the other
way around. Most textbooks start with fitting a line to data with uncorrelated
errors. I find that the algebra tends to obscure the meaning and that in practice you
are unlikely to ever use the formulas for the simpler cases yourself since curve fitting
programs are readily available. For this reason, I start with the general case.

A linear model is of the form

y(xxx) =
M∑
α=0

θαfα(xxx) (6.1.1)

where y is the dependent variable and x is the independent variable. It is linear in
the parameters θθθ. The simplest case is the average (only θ0 and f0(x) = 1), the next
simplest is a line (f0(x) = 1 and f1(x) = x). Every measured (or selected) value xi
in our data set has a measured value yi. The prediction of the model can be written

yi = Miαθα or yyy = MMMθθθ (6.1.2)

where the matrix MMM contains the values of the functions fα(xxx) at each point xxxi

MMM =

 f1(xxx1) f2(xxx1) · · ·
f1(xxx2) f2(xxx2) · · ·

...
...

. . .

 . (6.1.3)

We will assume the errors in the data points yyy are Gaussian. From our discussion
of the multivariant Gaussian, we know the log-likelihood is of the form

lnL = −1

2

[
(yyy −MMMθθθ)TCCC−1(yyy −MMMθθθ) + ln

(
(2π)N |CCC|

)]
(6.1.4)

If we take uniform priors on the parameters then the posterior will be proportional
to the likelihood.
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Let’s first find the maximum of the likelihood (and posterior) with respect to the
parameters. The parameter values at this point are called the Maximum Likeli-
hood Estimator or MLE of the parameters. I will denote this point as θ̂θθ. It helps
to go into Einstein notation for taking the derivative of the likelihood

∂ lnL
∂θα

= −1

2

∂

∂θα

[
(yi −Miβθβ)C−1

ij (yj −Mjγθγ) + ln
(
(2π)N |CCC|

)]
(6.1.5)

=
1

2

[
MiαC

−1
ij (yj −Mjγθγ) + (yi −Miβθβ)C−1

ij Mjα

]
(6.1.6)

= MiαC
−1
ij yj −MiαC

−1
ij Mjγθγ CCC is symmetric

(6.1.7)

= MMMTCCC−1yyy −MMMTCCC−1MMMθθθ (6.1.8)

Setting this to zero gives the MLE

θ̂θθ =
(
MMMTCCC−1MMM

)−1
MMMTCCC−1yyy (6.1.9)

You might be tempted to say
(
MMMTCCC−1MMM

)−1
= MMM−1CCC

(
MMMT

)−1
and then cancel all

the matricies out and get θ̂θθ = MMM−1yyy. This generally is not possible, however. Often
the number of parameters is small (2 for a line) and the number of data points is
much larger. In this case, the matrix MMM clearly cannot be inverted, it has more rows
than columns. There are also cases where the number of parameters might be larger
than the number of data points. For example, an image reconstruction problem might
have this property.

A linear problem that has more data points than parameters is considered overde-
termined in which caseMMM will be taller than it is wide and a unique best-fit solution
for the parameters can be found. An underdetermined problem that has more pa-
rameters than (relevant) data points will not have a unique best-fit solution. There
will be a range in parameter space that fits the data equally well.

If the number of data points is equal to the number of parameters and MMM is
invertible then the curve will pass through each data point. The model can be used
to interpolate between points in this case. A square MMM might still not be invertible
either because there are data points with the same x and different y or because the
functions fα(x) do not allow for enough freedom to reach every point. The result
of this would be that the columns (and rows) of MMM are not linearly independent.
Polynomials (y = θo + θ1x + θ2x

2 + . . . ) will provide enough freedom and are often
used for interpolation in this way.

We are not content with just the maximum likelihood estimate of the parameters
θθθ. In the linear case, we can find the complete posterior for them. If we look at
(6.1.4) you will see that since the parameters come into the model linearly they come
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into the lnL only up to quadratic order. Any quadratic can be put into the form
(θθθ−θ̂θθ)TAAA(θθθ−θ̂θθ)+c where c does not contain θθθ. This can be shown by ”completing the
squares” as we saw in our section on the multivariant Gaussian (sections 3.15). So the
posterior for the linear model parameters is Gaussian. We can find the inverse
of the covariance, the precision matrix, by taking derivatives of the log-likelihood

Aαβ =
1

2

∂2 lnL
∂θα∂θβ

(6.1.10)

since we know this must be the case for a Gaussian distribution. This is easily done
with equation (6.1.7). The posterior is then

p(θθθ|yyy,xxx) =

√
|MMMTCCC−1MMM |
(2π)N/2

exp

[
−1

2
(θθθ − θ̂θθ)TMMMTCCC−1MMM(θθθ − θ̂θθ)

]
(6.1.11)

and the covariance for the parameters is
(
MMMTCCC−1MMM

)−1
. This is usually not diagonal

even when CCC is diagonal. For this reason, the parameters of a linear model will be
correlated.

There doesn’t need to be only one independent (predictor) variable per data point.
For example, the independent variables might be time, temperature, and pressure and
the dependent variable might be the humidity or the rainfall in the next 24 hours. A
linear model is then of the form

y =
∑
α

θαfα(x, z, w, . . . ) (6.1.12)

where x, z, w, . . . are the independent variables. Miα = fα(xi, zi, wi, . . . ). If all the
fα’s are linear then this is fitting a hyperplane in parameter space.

It is also not necessary that there be only one dependent variable. If we have two,
y and z, that are related linearly to the parameters by

y =
∑
α

θαfα(xxx) and z =
∑
α

θαgα(xxx) (6.1.13)

we can rearrange this into a matrix form
y1

z1

y2

z2
...

 =


f1(xxx1) f2(xxx1) · · ·
g1(xxx1) g2(xxx1) · · ·
f1(xxx2) f2(xxx2) · · ·
g1(xxx2) g2(xxx2) · · ·

...
...

. . .


 θ1

θ2
...

 (6.1.14)

which is the same form as before (yyy′ = MMM ′θθθ) so it can be solved in the same way.
Some of the fα’s and gα could be zero so that the parameters could be related to only
one dependent variable or not.
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6.2 fitting a line

Let’s look at the simplest nontrivial and the most common case - fitting a line to data
with uncorrelated Gaussian errors in one variable. The model is

y = θo + θ1x (6.2.1)

Translating this into the matrix form gives

MMM =


1 x1

1 x2

1 x3
...

...

 (6.2.2)

The inverse of the covariance matrix for uncorrelated errors with equal variances is

CCC−1 =
III

σ2
(6.2.3)

where III is the identity matrix.

The inverse covariance for the parameters is

MMMTCCC−1MMM =
1

σ2

(
1 1 1 . . .
x1 x2 x3 . . .

)
1 x1

1 x2

1 x3
...

...

 (6.2.4)

=
1

σ2

(
N

∑
i xi∑

i xi
∑

i x
2
i

)
(6.2.5)

=
N

σ2

(
1 x

x x2

)
(6.2.6)

We can easily invert this matrix to find the parameter covariance

(
MMMTCCC−1MMM

)−1
=

σ2

N(x2 − x2)

(
x2 −x
−x 1

)
(6.2.7)
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and the MLE (6.1.9) is

θ̂θθ =
(
MMMTCCC−1MMM

)−1
MMMTCCC−1yyy (6.2.8)

=
1

N(x2 − x2)

(
x2 −x
−x 1

)(
1 1 1 . . .
x1 x2 x3 . . .

)
y1

y2

y3
...

 (6.2.9)

=
1

N(x2 − x2)

(
x2 −x
−x 1

)( ∑
i yi∑
i xiyi

)
(6.2.10)

=
1

(x2 − x2)

(
x2 −x
−x 1

)(
y
xy

)
(6.2.11)

=
1

(x2 − x2)

(
x2y − x xy
xy − x y

)
(6.2.12)

And (6.1.11) is the posterior. So, in this case, we just need to calculate the sample
averages x, y, x2 and xy to find the best fit line.

Of course, in practice, this fitting is usually done by a software library. The
software will easily handle inhomogeneous noise and correlations between data points.

6.3 fitting a line when both variables are uncertain

The case sometimes arises (particularly in astronomy) where the measurement of the
independent variable also has significant noise in it. In this case, the distinction
between dependent and independent variables is not meaningful, and we cannot use
the solution found in the previous section.

Let us call the observed values for the variable xxxo, yyyo and the ”true” values xxx,yyy.
The variance in their measurements will be σ2

y and σ2
x. Our model requires that
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yi = θo + θ1xi. The likelihood is

L(xxxo, yyyo|θθθ,xxx) =
1

(2πσxσy)N
exp

[
−1

2

∑
i

(yoi − θ0 − θ1xi)
2

σ2
y

]
exp

[
−1

2

∑
i

(xoi − xi)2

σ2
x

]
(6.3.1)

=
∏
i

G
(
yoi
∣∣θ0 + θ1xi, σ

2
y

)
G
(
xoi
∣∣xi, σ2

x

)
(6.3.2)

=
∏
i

G
(
θ1xi

∣∣yoi − θ0, σ
2
y

)
G
(
xi
∣∣xoi , σ2

x

)
(6.3.3)

=
∏
i

1

θ1

G
(
xi

∣∣∣∣yoi − θ0

θ1

,
σ2
y

θ2
1

)
G
(
xi
∣∣xoi , σ2

x

)
(6.3.4)

We can use the rule for combining multivariant Gaussians that was introduced in
section 3.15 to rearrange this

L(xxxo, yyyo|θθθ,xxx) =
1

θN1

∏
i

G
(
yoi − θ0

θ1

∣∣∣∣xoi , σ2
x +

σ2
y

θ2
1

)
G
(
xi

∣∣∣∣µc, σ2
x +

σ2
y

θ2
1

)
(6.3.5)

where the exact value of µc will not be important except that it does not contain xi.
We are interested in the posterior for the parameters θ0 and θ1 and not in the

actual value of x in each case (the xi’s). So we marginalize over these values which
in this case are parameters

P (θθθ|xxxo, yyyo) =

∫
dnx P (θθθ,xxx|xxxo, yyyo) (6.3.6)

= C
∫
dnx L(xxxo, yyyo|θθθ,xxx) (6.3.7)

=
C
θN1

∏
i

G
(
yoi − θ0

θ1

∣∣∣∣xoi , σ2
x +

σ2
y

θ1

)∫
dxiG

(
xi

∣∣∣∣µc, σ2
x +

σ2
y

θ2
1

)
(6.3.8)

=
C
θN1

∏
i

G
(
yoi − θ0

θ1

∣∣∣∣xoi , σ2
x +

σ2
y

θ2
1

)
GGG is normalized (6.3.9)

=
C(

2π(σ2
y + θ2

1σ
2
x)
)N/2 exp

[
−1

2

∑
i

(yoi − θ0 − θ1x
o
i )

2

(σ2
y + θ2

1σ
2
x)

]
(6.3.10)

Where C is a normalization constant that needs to be found by integrating over
the parameters. This is not Gaussian. Note that when σ2

y � θ2
1σ

2
x the posterior

approaches the solution found before and when σ2
y � θ2

1σ
2
x the line is steeper and the

noise in the x variable becomes more important.
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Now we can find the MLE for the parameters by finding the maximum of the
likelihood

∂ lnL
∂θ0

=
∑
i

(yoi − θ̂0 − θ̂1x
o
i )

(σ2
y + θ̂2

1σ
2
x)

= 0 ⇒ y − θ̂0 − θ̂1x = 0

(6.3.11)

∂ lnL
∂θ1

= − Nθ̂1σ
2
x

(σ2
y + θ̂2

1σ
2
x)

+
∑
i

(yoi − θ̂0 − θ̂1x
o
i )x

o
i

(σ2
y + θ̂2

1σ
2
x)

= 0 ⇒ yx− θ̂0y − θ̂1x2 − θ̂1σ
2
x = 0

(6.3.12)

Solving these equations gives

θ̂0 =
xy − x y

(σ2
x + x2 − x2)

(6.3.13)

θ̂1 =
y x2 + y σ2

x − xy x
(σ2

x + x2 − x2)
(6.3.14)

You can see that if σ2
x = 0 the former solution (6.2.12) is recovered.

orthogonal least-squares

Another way of fitting a line to data points when it is not clear that there are in-
dependent variables is to find the line that minimizes the sum of the squares of the
minimum distances between the points and the line. This is the length of the line
segment perpendicular the the line that passes through the point. This is equivalent
to the above solution when the noise in all variables is equal and constant. If the
noise is unknown this is a simple way of fitting a model.

6.4 regression with censored data

Sometimes one is faced with a regression problem where some of the data points are
upper limits on the dependent variable. As discussed in section 5.8.4, these points
should be taken into account in the likelihood with the cumulative distribution up to
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the upper limit. In the case of a linear model and Gaussian errors, this is

F (yupper|x) =

∫ yupper

−∞
dy′ p

(
y′

∣∣∣∣∣∑
α

θαfα(x), σ

)
(6.4.1)

=
1√
2πσ

∫ yupper

−∞
dy′ exp

− 1

2σ2

(
y′ −

∑
α

θαfα(x)

)2
 (6.4.2)

=
1

2

[
1 + erf

(
yupper −

∑
α θαfα(x)

σ

)]
(6.4.3)

The full likelihood will be the product of these factors for each upper limit and the
regular likelihood (6.1.4) for the measured values. The maximum of this needs to be
found numerically.

6.5 least-squares

So far in this chapter, we have considered the data to be Gaussian distributed with
a known covariance matrix, CCC. In that case, we can find the posterior and maximum
likelihood solution for a linear model. The same techniques are often used even when
the covariance is not known. We can seek a solution that simply minimizes the
square of the difference between the predicted and measured values for each of the
data points. In other words, minimize

MSE = ||yyy −MMMθθθ| |22 ≡
∑
i

(
yi −

∑
α

Miαθα

)2

(6.5.1)

In some contexts, this is called the mean squared error or MSE. (It is con-

ventional to define ||xxx||p ≡ (
∑

i x
p
i )

1/p. ) You can see from our previous discussion
that this is the same thing as finding the MLE solution for the case where the data
is Gaussian distributed and the covariance is constant and diagonal. The solution
follows just as before only without the covariance

θ̂θθLS =
(
MMMTMMM

)−1
MMMTyyy (6.5.2)

This is the least-squares solution. Found without assuming anything about the dis-
tribution of the data, but that does not mean its the best solution in all cases. The

matrix
(
MMMTMMM

)−1
MMMT is sometimes called the pseudoinverse or Moore-Penrose

inverse of the matrix MMM (replacing the transposes with the Hermitian transpose for
complex matrices).
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The minimum χ2 problem of section 6.1 can be converted into a least-squares
problem by pre-whitening the data. Whitening matrix WWW that has the property
WWW TWWW = CCC−1. The data vector xxx can then be transformed by

www = WWWxxx. (6.5.3)

The new data vector will have a covariance matrix equal to the identity matrix because

< (www −WWWMMMθθθ)(www −WWWMMMθθθ)T > = WWW < (xxx−MMMθθθ)(xxx−MMMθθθ)T >WWW T (6.5.4)

= WWWCCCWWW T (6.5.5)

= WWW
(
WWW TWWW

)−1
WWW T (6.5.6)

= WWWWWW−1
(
WWW T

)−1
WWW T (6.5.7)

= III. (6.5.8)

This is a generalization of the standardized variables we have seen before. See ap-
pendix A.5 for more details on this subject.

Because the components of the www data vector are uncorrelated, its χ2 reduces to
a sum of squares. For this reason, from a computational point of view, maximizing
χ2 and least-squares are essentially the same problem. The MLE will then be

θ̂θθ = (MMM ′TMMM ′)−1MMM ′Twww MMM ′ = WWWMMM. (6.5.9)

rank & under/overdeterminedness

A concept of importance here is the rank, r, of the MMM matrix. The rank of a matrix
is the number of linearly independent columns (or equivalently rows) of the matrix.
Consider a matrix that has nd rows by np columns. A matrix with full rank has a
rank equal to the minimum of nd and np, i.e. the smallest dimension of the matrix. A
square matrix (nd = np) with full rank is invertible. A square matrix with less than
full rank is singular. If MMM is an nd-by-np matrix there are nd parameters and np data
points.

When np < nd the problem is underdetermined, with more parameters than data
in essence. In this case, the parameters cannot be uniquely determined, but some lin-
ear combinations of them might be. Those linear combinations span a subspace that
is of dimension equal to the rank, r of the matrix MMM . The remainder of parameter
space, of dimension max(0, nd − r), is spanned by linear combinations of the param-
eters which are not constrained by the data. This subspace is the right null space
of the matrix MMM . That is MMMθθθ = 0 for all θθθ in this subspace. For every solution that
minimizes MSE you can add any vector of parameters in this null subspace and it will
not change MSE. Thus the solution is degenerate, not unique. The real requirement
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for being underdetermined is r < nd which will always be the case for np < nd, but
also includes cases where the model contains some hidden degrees of freedom that do
not change its prediction for the data. For example, if you want to make an image
reconstruction on a grid of pixels that are smaller than the psf or in a region where
there is no data you will not be able to find a unique best-fit answer.

In the opposite case, r < np, which is always true if nd < np, there is a unique
best-fit set of parameters. The problem is overdetermined. Here there is a degeneracy
in the data in that multiple data sets will give the same best-fit parameters. These
differ by vectors in the left null space of MMM (xxxTMMM = 0). Perhaps the simplest
example is where the only parameter is the mean, µ. Any change in the data that
keeps the sample mean constant will not change the best-fit solution. There are np−1
linearly independent ways of doing that. In general, there are max(0, np− r) linearly
independent vectors that can be added to the data without changing the best-fit
parameters.

calculating the pseudoinverse

The pseudoinverse is usually found by single-valued decomposition or SVD (see ap-
pendix A.2). The SVD decomposition of MMM is MMM = SSSVVVDDDT , where SSS and DDD are
orthogonal (more generally, unitary) and VVV is a diagonal matrix, but it is not square.
This is a generalization of the eigen decomposition. The number of columns of VVV
will be the number of parameters and the number of rows will be the number of data
points. The pseudoinverse of MMM is then

MMM+ ≡
(
MMMTMMM

)−1
MMMT = DDDVVV +SSST (6.5.10)

where VVV + is found by taking the reciprocal of the nonzero entries, i.e. V +
ii = 1/Vii for

Vii 6= 0. The SVD decomposition can be calculated relatively quickly and accurately
for a reasonable-size matrix. When the the matrices get large this can become pro-
hibitively expensive, computational time O

[
min(n2

dnp, ndn
2
p)
]
. There exist various

approximate and iterative methods for finding the inverse that are used when the
dimensions are high.

Any good linear algebra software package will provide ways of determining the
rank of a matrix. Usually, the SVD decomposition routine provides this.

6.6 Bayesian Prediction

We have dealt with Bayesian inference. There is another class of statistical problems
where one is interested in prediction. We will return to this type of problem in
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later chapters, but here we consider how they can be addressed within the Bayesian
framework.

We can find the posterior for the parameters p(θθθ|YYY ,XXX) where YYY ,XXX is the training
set with known independent and dependent variables. Now consider a new inde-
pendent value xxx. We can calculate the probability of a new dependent variable by
marginalizing the likelihood over the posterior,

p(yyy|xxx,YYY ,XXX) =

∫ ∞
−∞

dθθθ p(yyy,θθθ|xxx,YYY ,XXX) (6.6.1)

=

∫ ∞
−∞

dθθθ p(yyy|θθθ,xxx,YYY ,XXX)p(θθθ|x,YYY ,XXX) (6.6.2)

=

∫ ∞
−∞

dθθθ p(yyy|θθθ,xxx)p(θθθ|YYY ,XXX) (6.6.3)

=

∫ ∞
−∞

dθθθ L(yyy|θθθ,xxx)p(θθθ|YYY ,XXX) (6.6.4)

= Eθ[L(yyy|θθθ,xxx)]. (6.6.5)

The first step was the product rule. The second step follows from the requirement
that the parameters do not depend on the new point x where we want to make a
prediction and that the y value at this point does not depend on the previous data
set only through the parameters, it only depends on the model and x. In the last
step, we recognized p(yyy|θθθ,xxx) as the likelihood for the new data point. You can see
that this is basically taking the expectation value of the likelihood over the posterior
for the parameters given the training data.

The above is a prediction for the observed value of yyy which includes noise so it
could be biased, i.e. the prediction includes noise. But given a set of parameters
and the independent variable(s), the regression model predicts a unique dependent
variable(s) so we can predict the ”real” yyy without noise. In this case, we can interpret
p(yyy|θθθ,xxx) as a delta function that matches one unique yyy to each xxx given parameters θθθ.
The prediction becomes

p(yyy|xxx,YYY ,XXX) =

∫ ∞
−∞

dθθθ δD (yyy − fff(xxx|θθθ)) p(θθθ|YYY ,XXX) (6.6.6)

where yyy = fff(xxx|θθθ) is the ”regression model”. This allows you to predict a distribution
for yyy given xxx (and the assumed regression model) if you can do the integral. This is
however not the same thing as the distribution of y’s that might be observed in the
future which would include noise.
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with a linear model and Gaussian noise

In the special case of a linear regression, f(xxx|θθθ) =
∑

i f
i(x)θθθi = fff(x)·θθθ. The prediction

for all YYY is MMMθθθ where the jth row of M is fff(xj). The posterior for θθθ given YYY , XXX is,
as we have seen, the Gaussian

p(θθθ|YYY ,XXX) =

√
|MMMTCCC−1MMM |

(2π)n
exp

[
−1

2
(θθθ − θ̂θθ)TMMMTCCC−1MMM(θθθ − θ̂θθ)

]
. (6.6.7)

The likelihood for y given x and parameters θθθ is

L(y|θθθ) =
1√

2πσ2
y

e
− (y−fff(x)·θθθ)2

2σ2
y . (6.6.8)

The predicted distribution of y is the convolution of two Gaussians,

p(y|YYY ,XXX) =

∫
dθθθ L(y|θθθ) p(θθθ|YYY ,XXX) (6.6.9)

which must be another Gaussian. Instead of doing the integral above, we can more
easily just calculate the mean and variance of p(y|YYY ,XXX) and then plug them into the
known Gaussian pdf,

〈y〉 =

∫
dθθθ fff(x) · θθθp(θθθ|YYY ,XXX = fff(x) · 〈θθθ〉 = fff(x) · θ̂θθ (6.6.10)

where θ̂θθ is the ML parameters with YYY , XXX.
The variance of the prediction is

〈y2〉 − 〈y〉2 =

∫
dy

∫
dθθθ y2 L(y|θθθ) p(θθθ|YYY ,XXX)− 〈y〉2 (6.6.11)

=

∫
dθθθ
[
σ2
y + (fff(x) · θθθ)2] p(θθθ|YYY ,XXX)− 〈y〉2 (6.6.12)

=

∫
dθθθ
[
σ2
y + fff(x)θθθθθθTfff(x)T

]
p(θθθ|YYY ,XXX)− 〈y〉2 (6.6.13)

= σ2
y + fff(x)

[
MMMTCCC−1MMM + θ̂θθθ̂θθ

T
]
fff(x)T − 〈y〉2 (6.6.14)

= σ2
y + fff(x)MMMTCCC−1MMMfff(x)T . (6.6.15)

The first term comes from the error in the measurement of y. The second term comes
from the uncertainty in the parameters.
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6.7 nonparametric regression and smoothing

Another approach to regression is to smooth the data instead of fitting all of it to
a polynomial or other functions. In this case, one is usually not interested in the
parameters of the fit in themselves, just in finding a continuous function f̂(x) that
predicts y for any value of x. This allows for more flexibility in the fit because no
functional form is assumed, at least not over the full range of the independent variable.
This approach is sometimes call LOWESS (locally weighted scatter plot smoothing)
or LOESS (locally estimated scatter plot smoothing).

One popular way of doing this is kernel smoothing. One chooses a kernel function
K(x), it might be a top-hat function, a Gaussian, B-spline, or something else. It is
symmetric about x = 0 and drops off rapidly for |x| > 1. The estimated function
f̂(x) is then

f̂(x) =

∑n
i=1 yiK

(
x−xi
hx

)
∑n

i=1 K
(
x−xi
hx

) (6.7.1)

where hx is a scale factor that needs to be chosen. This is also called the Nadaraya-
Watson estimator. The error in this estimator at some evenly spaced points can
be calculated by bootstrap (section 7.1.1) and then the scale hx can be increased or
decreased until the desired amount of variance in the fit is reached. A large hx will
be stiffer and thus its bias will be larger. A smaller hx will be more flexible and have
a larger variance. The hx can also be found by cross-validation (section 7.2.1) or
bootstrap resampling (section 7.1.1).

The average of this is an unbiased estimator of the function f(x) smoothed with
the kernel

〈
f̂(x)

〉
=

∑n
i=1 f(xi)K

(
x−xi
hx

)
∑n

i=1 K
(
x−xi
hx

) . (6.7.2)

(which is not an unbiased estimator of f(x)) and, if the noise is uncorrelated between
data points, the variance is

σ2
f̂(x)

=
〈
f̂(x)2

〉
−
〈
f̂(x)

〉2

(6.7.3)

=

∑n
i=1 σ

2
i K

(
x−xi
hx

)2

[∑n
i=1 K

(
x−xi
hx

)]2 . (6.7.4)
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It is not required that there be only one independent variable. In other words, x
could be a vector and f̂(xxx) could be a function of several variables. The kernel could
be isotropic in these variables or there could be a different hx for each dimension.

Kernel smoothing is a particular case of a wider class of regression methods where
a curve is fit to a subset of the points that are near x instead of all the points at once.
Spline fitting is another example. Density estimation where hx is a function of the
density of points is another.

Problem 32. Calculate the covariance of the kernel regression function at two
different independent variable values:

Ĉxz ≡
〈
f̂(x)f̂(z)

〉
−
〈
f̂(x)

〉〈
f̂(z)

〉
(6.7.5)
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Chapter 7

Resampling techniques &
supervised learning

In this chapter, we consider methods that require less knowledge of the data’s dis-
tribution. Such methods attempt to draw conclusions by estimating the distribution
of the data from the data itself. Such methods generally require a large amount of
statistically independent data and their findings are weaker than would be the case
if the distribution were known. On the other hand, they assume less about the data,
and so have a very broad range of applicability

7.1 resampling techniques

Resampling methods seek to estimate a statistic’s expectation value and variance by
randomly sampling from the data itself without assuming a specific distribution for
it. There are many such techniques, but the most widely used ones are bootstrap and
jackknife resampling.

7.1.1 Bootstrap (nonparametric bootstrap) resampling

Let us say that we have n data points xxxi. The data here might be one number for
each trial or many. Consider the bootstrap pdf

f bs(xxx) =
1

n

N∑
i=1

δ(xxx− xxxi) (7.1.1)

where the δ is a Dirac delta function if xxx is continuous. This can also be considered the
derivative of the empirical cumulative distribution function. Or you could consider it
the limit of a histogram of the data as the bin width goes to zero.

121
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We can use f bs(xxx) as an estimate for the unknown pdf of the data. For a discrete
distribution with finite outcomes, it is clear that this will converge to the true distri-
bution as n → ∞. It is also true that in the continuous case, it will asymptotically
converge to the real distribution.

Let’s consider any statistic that is a function of these data points t(x1, x2, . . . xn).
Assuming that each data point is statistically independent, the expectation value of
this statistic will be

E[t(x1, x2, . . . xn)] =

∫ ∞
−∞

dx1 . . .

∫ ∞
−∞

dxn p(x1) . . . p(xn)t(x1, x2, . . . xn). (7.1.2)

Using the bootstrap estimation of the pdf (7.1.1) gives

Ebs[t(x1, x2, . . . xn)] =

∫ ∞
−∞

dx1 . . .

∫ ∞
−∞

dxn f
bs(x1) . . . f bs(xn)t(x1, x2, . . . xn) (7.1.3)

=
1

nn

n∑
i1=1

· · ·
n∑

in=1

t (xi1 , xi2 , . . . xin) (7.1.4)

These sums contain all possible combinations of the data in the ”slots” of t (xi1 , xi2 , . . . xin).
All of these combinations except one, the original data, have repeated values.

The sums can be done in some simple cases. Let’s consider the arithmetic mean,
x = 1

n

∑
i xi

Ebs[x] =
1

nn

n∑
i1=1

· · ·
n∑

in=1

1

n
(xi1 + xi2 + . . . xin) (7.1.5)

=
1

nn

n∑
i1=1

· · ·
n∑

in=1

xi1 all terms are the same (7.1.6)

=
1

nn

n∑
i1=1

xi1

[
n∑

i2=1

· · ·
n∑

in=1

]
(7.1.7)

=
nn−1

nn

n∑
i1=1

xi1 (7.1.8)

= x (7.1.9)

So the bootstrap mean for the sample mean is the same as the sample mean. Okay,
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now let’s look at the bootstrap variance for the mean to estimate an error for it,

V arbs[x] =Ebs[x2]− x2 (7.1.10)

=
1

nn

n∑
i1=1

· · ·
n∑

in=1

1

n2
(xi1 + xi2 + . . . xin)2 − x2 (7.1.11)

=
1

nn

n∑
i1=1

· · ·
n∑

in=1

1

n2

(
x2
i1

+ x2
i2

+ · · ·+ xi1xi2 + xi1xi3 . . .
)
− x2 (7.1.12)

=
1

nn

[
1

n2

(
nn−1

n∑
i1=1

x2
i1

+ nn−1

n∑
i2=1

x2
i2

+ · · ·+ nn−2

n∑
i1=1

n∑
i2=1

xi1xi2 (7.1.13)

+nn−2

n∑
i1=1

n∑
i3=1

xi1xi3 . . .

)]
− x2 (7.1.14)

=

(
1

n2

n∑
i1=1

x2
i1

+
n(n− 1)

n2
x2

)
− x2 (7.1.15)

=
1

n

(
1

n

n∑
i1=1

x2
i1
− x2

)
(7.1.16)

This is an asymptotically unbiased estimator of the variance. The ensemble average
is

E
[
V arbs[x]

]
=
σ2

n
(7.1.17)

which is the same as for the true variance.
The average and mean are special cases. An estimate of the expectation value of

any statistic can be found in this way. For example, the least-squares estimate for a
parameter is a statistic, and we could estimate its expectation and variance in this
way. In practice, the sums in (7.1.4) are difficult to do explicitly because it has many
terms. There are (

2n− 1

n

)
(7.1.18)

(Davison & Hinkley, 1997) distinct bootstrap samples which is 92,378 for n = 10 and
' 4.53 × 1058 for n = 100.1 As a result, the sums are nearly always estimated by
Monte Carlo sampling, which is quite easy to do in this case. The sums are over all
combinations of the data values. We can choose n random values from the original

1The number of bootstrap samples is nn if you count permutations of the same set as different.
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data with replacement to get a new data set taken from the distribution f bs(x). We
then calculate our statistic from this. We can do this almost as many times as we
please to get a sample of values for our statistic as long as the data set is moderately
large.

Bootstrap resampling can also be used for model selection in the case of nested
models. If an additional parameter is added to the model, we can calculate its vari-
ance among the bootstrap samples. If this variance is significantly smaller than the
difference between the best-fit value for the parameter and the value the parameter
would have had in the simpler model, then you can conclude that the new parameter
is justified. For example, in fitting polynomials to data, if we add a new coefficient
and the bootstrap variance for this coefficient indicates that it is consistent with zero,
then we would not accept this new coefficient. More on this later.

The justification for bootstrap sampling requires that the data points are inde-
pendently distributed and that there are a large number of them. This might not
be the case, but it is often used when there is some correlation between the data
points. If there is enough data, these correlations are not expected to influence the
result. Sometimes, consecutive data points or data points within some range in the
independent variables are known to be correlated, but the data is spread over many
of these ranges so that the correlation can be ignored. However, this needs to be
investigated carefully for each case.

How many bootstrap samples should you take? As a rule of thumb, it should be
more than 1,000. You should take a look at the histogram of the sampled statistic to
judge if the mean and variance are well defined. Feigelson & Babu (2012) recommend
that the number of samples should be at least n(lnn)2. Note that it is important
that all of the original n samples be independent.

A note on terminology: What I am calling bootstrap is sometimes called non-
parametric bootstrap. Parametric bootstrap is where a specific model is chosen,
and random samples are drawn from it to find what the distribution of the statistic
would be if this model were correct. I will generally call this second type Monte
Carlo sampling. The term ”bootstrap” in physics and astronomy usually refers to
the nonparametric kind.

Problem 33. Show that (
2n− 1

n

)
(7.1.19)

is the number of distinct bootstrap samples. (Hint: see problem 7.)
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7.1.2 Jackknife resampling

Another related technique is called the jackknife resampling or ”leave-one-out” re-
sampling. This is directly related to k-fold cross-validation, which is discussed in
§7.2.1). The term jackknife is more common when considering inference problems
and cross-validation when considering prediction or machine learning problems.

Consider any statistic t(x) calculated from n data points. Let’s take tn to mean
the expectation of the statistic for a sample of size n. In general, this statistic will
be biased relative to its value with an infinitely large data set. For a wide class of
statistics, we expect the leading order of the bias to be ∝ n−1 so we can write

tn = t∞ +
tb
n

+O(n−2) (7.1.20)

Applying this to the n− 1 case gives

tn−1 = t∞ +
tb

n− 1
+O(n−2) (7.1.21)

Combining these, we can eliminate the lowest order bias and solve for the asymptotic
limit

t∞ = ntn + (1− n)tn−1 +O(n−2) (7.1.22)

= tn + (n− 1) (tn − tn−1) +O(n−2) (7.1.23)

We have only one sample of size n, but we have n sub-samples of size n− 1, and
we can use them to estimate tn−1. Take t

(i)
n−1 to be the statistic calculated from the

data with the ith data point left out. The jackknife estimate for tn−1 is

t
J
n−1 ≡

1

n

n∑
i=1

t
(i)
n−1 (7.1.24)

From (7.1.23), the jackknife estimate for the bias in the statistic is

biast =t∞ − tn (7.1.25)

= ' (n− 1)
[
tn − t

J
n−1

]
(7.1.26)

Using this, we get the jackknife estimate of the statistic t

tJn =tn + biast (7.1.27)

=ntn + (1− n)t
J
n−1 (7.1.28)
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which includes a correction for bias. We can also calculate the jackknife estimate of
the variance for our statistic by applying the same logic,

V arJ [tn] =
n− 1

n

n∑
i=1

(
t
(i)
n−1 − t

J
n−1

)2

(7.1.29)

This derivation is a bit dodgy because the expansion (7.1.20) is not unique. It
can be shown, in general, that〈

n∑
i=1

(
t
(i)
n−1 − t

J
n−1

)2
〉
≤ V ar[tn−1] (7.1.30)

and that the prefator is a common scaling for statistics, i.e. V ar[tn] = n−1
n
V ar[tn−1]+

O(n−3) So, the justification for the jackknife is really that it is an educated guess and
works well in many specific cases.

Problem 34. If tn = 1
n

∑
i xi = x show that tJn = x and

V arJ [tn] =
s2

n
=

1

n

1

n− 1

∑
i

(xi − x)2 (7.1.31)

i.e., an unbiased estimate of the variance.

Problem 35. We know that tn = 1
n

∑
i(xi − x)2 is a biased estimator of the

variance from previous chapters. Show that the jackknife estimate for tn is tJn =
1

(n−1)

∑
i(xi − x)2 which is not biased.

These problems show that the jackknife estimator and variance estimate work in
the simplest cases. In practice, they are used when the statistic is more complicated
than the mean or variance and the distribution of the data is unknown.

Problem 36. With a computer, create some fake data by adding Gaussian noise
to points on a line. Fit a line to the fake data. Find the jackknife error and bias on
the slope and intercept of the line.

Problem 37. Do the same as problem 36, but with bootstrap resampling instead
of jackknife.

7.2 supervised learning & regression

It might be known that the distribution of some dependent variables yyy are Gaussian,
but the covariance is not known, or it might be that the distributions of yyy and xxx are not
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model complexity 

bias

variance
MSE

2

Figure 7.1: General behavior of the MSE and its bias and variance components as a
function of the model complexity.

known at all, in which case the least-squares solution is an educated guess. Without
knowing the distribution of the yi’s and xi’s, we can’t say much about the posterior
of the θα’s, but in some problems, we might not be too interested in the actual values
of the parameters θα. In many cases, people are more concerned with prediction than
inference, i.e., finding a model that will predict the dependent variable given a set
of independent variables. This type of problem is especially common in commercial
settings and the social and medical sciences. The independent variables might be
age, income, and number of children, and the dependent variable is the amount of
money they pay for their next car. There might be no reasonable argument that the
errors or intrinsic distributions of the variables are of any particular form. Can we
still make progress on this problem? If we have enough data, the answer is a limited
yes.

When constructing a linear prediction model the question immediately arises re-
garding how many model parameters should be used. Without a well-motivated
physical model, there is no reason to limit the number on theoretical grounds, and
without knowing the distribution of the variables, we cannot use Bayesian model se-
lection or hypothesis testing (chapter 10) to limit the model space. If we use too
many parameters, our model will fit the data well in the sense that the mean squared
error, MSE (6.5.1) will be small for the data used in the fit, but any data that was
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not used to fit the model will not be predicted well. We will have overfitted the data.
This is known as the bias–variance trade-off in supervised learning.

The regression model should be viewed as a statistic just like any other. It is a
function of a data set and returns a prediction for the dependent variables. Unlike
some other statistics (mean, variance. median, MLE, etc.), it is a function of the
independent variables, so you might think of it as a continuous collection of statistics.
Like other statistics, we can consider its distribution, bias, variance, etc.

An instructive way to look at the overfitting problem is to decompose the MSE
as follows: Let y be the measured dependent value, let f(x) be the true relationship
between the independent and dependent variables, ny be the noise in the measurement

of y and f̂{xi}(x) is the model trained or fit to the data set {xi} that predicts y given
x. The MSE averaged over possible data sets is

〈
(y − f̂{xi}(x))2

〉
=

〈(
f(x) + ny − f̂{xi}(x)

)2
〉

(7.2.1)

=
〈
f(x)2 + n2

y + f̂{xi}(x)2 − 2f(x)f̂{xi}(x)
〉

〈ny〉 = 0

(7.2.2)

= f(x)2 + σ2
y +

〈
f̂{xi}(x)2

〉
− 2f(x)

〈
f̂{xi}(x)

〉
(7.2.3)

= f(x)2 + σ2
y + V ar[f̂{xi}(x)] +

〈
f̂{xi}(x)

〉2

− 2f(x)
〈
f̂{xi}(x)

〉
(7.2.4)

= σ2
y + V ar[f̂{xi}(x)] +

(
f(x)−

〈
f̂{xi}(x)

〉)2

(7.2.5)

= σ2
y + V ar[f̂{xi}(x)] + Bias

[
f̂{xi}(x)

]2

(7.2.6)

When the model is simple, like a constant or line, the variance in the model prediction
V ar[f̂{xi}(x)] will be small. (The variance is over all possible training sets.) The bias
will be significant for a model that is too simple because it might not capture some
of the real structure in f(x). As the model becomes more complex, the bias will go
down, but the variance in the model will go up because spurious features caused by
noise will be incorporated into the model, and these features will change between data
sets. The MSE will ideally have a minimum somewhere between too simple and too
complex. This decomposition and general behavior are valid for linear and nonlinear
models. σ2

y is an unavoidable lower bound on the MSE because of noise.

The uncertainty coming from random noise is sometimes reffed to as aleatoric
uncertainty and that from uncertainty in the mode as indexitepsitemic uncertainty.
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7.2.1 cross-validation

A common, practical way to select a model and estimate its predictive error is called
k-fold cross-validation. The data is split into k subsets. k − 1 of the subsets are
used to fit a model by least-squares or other method. This data set is called the
training set. The remaining subset that was not used in the fit is called the validation
set. The mean squared error, MSE, is calculated using this model and the validation
set. This is repeated so that each of the k subsets is used as a validation set once.

If we call the model fit to all but the jth set Ŷ−j(x) then the predicted error
(PE) is

PE =
1

k

k∑
j=1

1

nj

∑
i∈{j}

[
yi − Ŷ−j(xi)

]2

(7.2.7)

where the inner sum is over the subset left out. The number of parameters can be
increased until the PE reaches a minimum and starts to increase due to overfitting.
Finally the model with the smallest PE is fit to all the data. The PE is an estimate
for the error which is generally conservative (biased upward) because each of the k
models uses less of the data than the final one and thus has a larger variance. A
measure of the bias can be found by subtracting the MSE for the model fit on the
whole set from the PE from the k validation subsets.

The special case of cross-validation where the validation set is a single data point
and the training set is the rest of the data is called jackknife resampling or leave-
one-out cross validation; more on this in section 7.1.2. Jackknife cross-validation is
generally preferred because the model is fit to almost the whole data set each time
making the PE closer to the error one expects for the final model fit on all the data.
However, this requires doing n fits for each model which can be very time-consuming
in some cases.

Note that a single value for the estimated error might be deceptive. The er-
ror might depend on the independent variables as is clear in equation (7.2.6). In
particular, if the data used to fit the model has few or no points in some region of
independent variable space, the model that minimizes the MSE may fail badly in that
region and the PE will give no indication of this. The PE is only an estimate of the
mean error for data that is distributed like the training set, including the distribution
of independent variable.

This technique for fitting a model is an example of supervised learning in a
machine learning context. The computer ”learns” how to predict y from the x’s.
The independent variables are often called feature variables in this context. The
machine is ”intelligent” in that it can predict y’s based on x values that it has never
seen before. Thus if we replace the term ”fitting” with ”training”, the linear model
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becomes the simplest form of artificial intelligence. More complicated nonlinear mod-
els like support vector machines (SVM) and artificial neural networks (ANN) perhaps
fit this description better. They are trained, or ”learn”, in much the same way using
cross-validation.

It is also possible to train a regression model with something other than the least-
squares solution. For example, the solution could minimize

||yyy −MMMθθθ| |1 ≡
∑
i

|yi −
∑
α

Miαθα| (7.2.8)

which is less sensitive to outliers. In general, the function that is minimized to find
the best-fit model is called the loss function or sometimes the cost function.

7.3 R2

The coefficient of determination, R2, is sometimes used for model selection also.
It compares the MSE to the variance of the data,

R2 = 1−

∑
i

[
yi − Ŷ (xi)

]2

∑
i (yi − y)2 (7.3.1)

You can see that if the model is very good R2 will be close to 1.
The R2 statistic by itself tends to favor overly complex models. To correct for this

the adjusted R2
a statistic

R2
a = 1− n− 1

n−Np

R2 (7.3.2)

is advocated where n is the number of data points and Np is the number of parameters.
The motivation for this statistic comes from normally distributed samples. It does
not have as clear a justification in other cases although it is sometimes still used.

7.4 adding a prior

We might want to add a prior for our linear model’s parameters. There are several rea-
sons why we might do this. One is that we might be trying to reconstruct something
with a lot of parameters, like an image, using relatively sparse data. In this case, a
prior or regularization can help make the parameters that are not well-constrained
behave nicely. It makes the model ”stiffer” in the sense that it will not wiggle around
fitting every stray data point. In some cases, we might have a well-justified prior.
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For example, it is well justified to assume the Cosmic Microwave Background (CMB)
is a Gaussian field while making a map of it. In other cases we might want to make
our reconstruction smooth everywhere the likelihood is not telling us otherwise. For
example in trying to deconvolve a blurred image we don’t want to add features that
are not supported by the data. In many fields, the prior is called the regularization
function.

This is related to the overfitting problem, model selection, and feature selection.
A prior can be used to force parameters that are not required for the fit to be small
(or to be some other chosen value). In this way, one does not have to pick which
parameters to include. The prior will select which ones are useful for the fit. A
problem that is highly underdetermined can be forced to give a unique answer because
the combination of the sum of the loss function and the regularization function has
a unique minimum. The trade-off is that there are one or more parameters related
to the ”strength” of the regularization relative to the loss (or log-likelihood) that
need to be chosen. This is usually done by adjusting the strength to minimize the
cross-validation PE.

A popular choice for regularization is to use a Gaussian likelihood and a Gaussian,
uncorrelated prior on the parameters giving a posterior of the form

lnP (θθθ) = −1

2

[
(yyy −MMMθθθ)TCCC−1(yyy −MMMθθθ) + ln

(
(2π)N |CCC|

)
− λθθθTθθθ

]
(7.4.1)

where λ is a free parameter that regulates the strength of the prior. The maximum
posterior solution will be

θ̂θθ =
(
MMMTCCC−1MMM + λIII

)−1
MMMTCCC−1yyy (7.4.2)

which can be found as in the case of section 6.1. As before, for the least-squares
solution, we just removeCCC. In that case, you can think of λ as being in units of inverse
variance in the data points. Using this prior while fitting a model is sometimes called
ridge regression. The parameters that are not well supported by the likelihood
will take a penalty for being large and thus will be suppressed. Instead of adding
parameters to the model until cross-validation or model selection shows that it is
no longer justified, you can instead reduce λ until it is no longer justified. This is
particularly useful when the independent (a.k.a. predictor or feature) parameters are
not ordered in some way so that it is not clear which ones are important (Are the
number of books owned more or less important than the age in predicting income?).
You can think of the prior as stiffening the model so that it doesn’t loosely overfit all
the data points.

An alternative to ridge regression which has some rather nice properties is LASSO
regression (least absolute shrinkage and selection operator). This is equivalent to a
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Gaussian likelihood and an exponential (a.k.a Laplacian) prior using `1 length

lnP (θθθ) = −1

2

[
(yyy −MMMθθθ)TCCC−1(yyy −MMMθθθ) + ln

(
(2π)N |CCC|

)
− λ ||θθθ||1

]
(7.4.3)

||θθθ||1 =
∑

i |θi| There is no closed-form solution for the maximum posterior, but
there are many computer libraries that will find it for you numerically. The LASSO
is mostly used in prediction and data compression. It has the tendency to force
unimportant parameters to exactly zero rather than just to small values like for ridge
regression. In this way, it does a kind of automatic model selection by identifying
which parameters can be discarded.

Problem 38. The observed data ddd are related to some model parameters θθθ by the
vector relation

ddd = WWWθθθ + nnn (7.4.4)

where nnn is Gaussian distributed noise with covariance NNN ij = 〈ninj〉 and WWW is a fixed
matrix.

1. What is the maximum likelihood solution for θθθ?

2. If you add a prior

p(θθθ) =
1

(2π)1/n
√
|AAA|

e−
1
2
θθθTAAA−1θθθ (7.4.5)

what is the solution for θθθ that maximizes the posterior? The result is known as
a Wiener filter.

7.5 Robustness & breakdown point

We have seen that some objectives in selecting an estimator might be for it to be
unbiased or have a small variance. Another objective might be that it be insensitive
to assumptions about the distribution of the data or that it be insensitive to con-
tamination of the data with points that are outliers. Statistics with this property
are called robust or resistant statistics. We have already seen that the sample
median is more robust than the sample mean. The degree of robustness is measured
with the breakdown point. Loosely, this is the fraction of the data that can be
contaminated with data that is arbitrarily distributed before giving a wrong answer.
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The maximum breakdown point is 0.5 because at this point it would not be possible
to differentiate between the contaminants and the non-contaminants. The sample
median has a breakdown point of 0.5 because if n/2− 1 of the points were arbitrarily
large the median would still be within a cloud of the uncontaminated points. The
sample mean has a breakdown point of 0 because a single arbitrarily large value will
cause the mean to be arbitrarily large.

7.5.1 culling or trimming

One approach to making statistics more robust is to simply remove outliers. This can
be made systematic by calculating the residuals for a model |xi| = |di − fi(θθθ)| where
fi(θθθ) is the model prediction for data point di and then discarding a fraction α of the
data that has the largest residuals. The final statistic is calculated from this culled
or trimmed data set. The α-trimmed mean is an example of this. Its breakdown
point will be α rather than 0 for the sample mean. The trimmed least squares is
another example. Here regression is done on the culled data set. These are examples
of the general class of L-estimators which are linear combinations of order statistics.

For the trimmed least squares and other trimmed methods the culling or trim-
ming depends on the initial model used to find the residues. If the data has a large
degree of contamination you would expect them to be unreliable and this method can
give spurious results. In general M-estimators (next section) are favored over these
trimming techniques although in many cases they amount to the same thing and have
the same dangers.

7.5.2 M-estimators

M-estimators are a generalization of the idea behind least-squared fitting and also a
generalization of the maximum likelihood estimator. The method is generally used
to make a fit more robust and thus less sensitive to outliers. The idea is to find the
parameter values that minimize the function∑

i

ρ(di, θθθ) (7.5.1)

where ρ(di, θθθ) is called the loss function. For least squares ρ(di, θθθ) = (di − fi(θθθ))2

and for maximum likelihood ρ(di, θθθ) = ln[L(di|θθθ)]. If one isn’t so certain what the
likelihood is or one is concerned that the data might be contaminated with spurious
values, these particular choices might not be the best ones.

In choosing a loss function it seems advantageous that it have a minimum at
x = di − fi(θθθ) = 0. The quadratic form of the LS loss function at large values of
xi will make it sensitive to outliers. To reduce this one typically makes the function
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Figure 7.2: Some examples of loss functions.

linear or constant at large |xi| = |di − fi(θθθ)|. One option is just ρ(x) = |x|. This
reduces the sensitivity to outliers, but it weights exact matches of the data and the
model more strangely than is usually justified. In some cases, it can also result in
many equal minima (Think of a line fit to more than two data points.). Another
possibility is the Huber loss function

ρ(x) =

{ (
x
s

)2
, |x| < s

|x|
s

, |x| > s
(7.5.2)

which is quadratic near its minimum. Still, another choice is Tukey’s biweight
function

ρ(x) =

{
x2

2

(
1− x2

s2
+ x4

3s4

)
− s2

6
, x < s

0 , x > s
(7.5.3)

These loss functions are shown in figure 7.2.
This approach involves introducing an extra scale s that is not known a priori. It

essentially determines which data points will be considered outliers. Without some
justification for this scale, it can be equivalent to just throwing data out because you
didn’t like it which is not good practice so great care should be taken in applying
this method in a scientific context. You could have a situation where you have some
idea of what the variance of the events you are interested in is so that you can use an



7.5. ROBUSTNESS & BREAKDOWN POINT 135

M-estimator to essentially filter out background events. This will work as long as the
number of background events is not so large that they dominate the sum of the loss
functions. When this happens you are at the breakdown point of the M-estimator.

M-estimators2 are only asymptotically normally distributed. The variance of the
M-estimator can be estimated by bootstrapping the data. In other words, the estima-
tor is calculated for each of many bootstrap resamplings of the data and the variance
is taken.

2Besides M and L-estimators there are also R-estimators which are based on rank residuals.
Jaeckel’s rank regression is an example of this.
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Chapter 8

Hypothesis testing & frequentist
parameter fitting

Hypothesis testing is the frequentist version of Bayesian inference and model selection.
In some cases, it is easier to apply hypothesis testing, and, as we have seen, Bayesian
model selection has some undesirable characteristics, at least in some cases. Many
specific hypothesis tests are commonly used in practice and are essential for any
scientist to understand.

Hypothesis testing takes a distinctly different approach to the question of whether
a theory or hypothesis is supported by the data or not. The Bayesian method al-
ways compares the probability of competing models, while hypothesis testing seeks
to disprove a hypothesis by showing that the observed data would not be likely if
the hypothesis were true. From the frequentist point of view, there is no probability
at all associated with parameters or models. (The mass of the electron is just what
it is. If you ran the experiment over again, it would not change to some other value.)
Only the data is probabilistic.

The basic steps in most applications of hypothesis tests are as follows:

1. State the hypothesis as a well-posed true or false question. The goal is to falsify
this question. This is called the null hypothesis and is denoted Ho.

2. Choose or invent a statistic (called a goodness-of-fit statistic) that is affected
by the truth of the hypothesis.

3. Calculate the value of the statistic with the data.

4. Determine the probability distribution of the statistic by analytic or numerical
methods given that the null hypothesis is true. Identify a direction or directions
where the probability of getting those values for the statistic gets less and less

137
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probable. This is usually as the statistic becomes very large, absolutely or in
magnitude.

5. With this distribution, calculate how probable it is for the statistic to be further
in the direction of bad fits than the value calculated using the data. This is
called the p-value.

6. If this probability is sufficiently improbable, the hypothesis is ruled out. If it is
not sufficiently improbable, the hypothesis is consistent with this statistic.

To explain hypothesis testing, let me tell you a little fable. Someone brings you
an unidentifiable animal. You say, ”I think it is a dog.” That is your hypothesis. You
think about what a dog definitely has. Dogs have fur. That’s your statistic. If the
animal doesn’t have fur you can say that the animal is not a dog. If it has fur, you
can say that this characteristic is consistent with its being a dog. You can’t say it is
a dog. Other animals have fur, and there might be some other characteristics of this
animal that are inconsistent with being a dog; say, it has no claws. In most cases,
you can’t prove the hypothesis completely false; it is only unlikely. It might be a dog
with a rare disease that made it lose its fur or a rare genetically engineered dog that
doesn’t grow fur. Note that, in this case, there is no specific alternative hypothesis;
it is either dog or not dog. Asking if it is a cat would be a different hypothesis and a
different test. The existence of fur would not distinguish between dogs and cats. You
would need a different statistic.

In most cases, we can never prove a hypothesis right. In fact, in some cases, a
statistical test might show consistency with a hypothesis that is clearly ruled out by
another statistical test. The ”null” in ”null hypothesis” refers to the rejection process.

Errors or failures in hypothesis testing are, by tradition categorized into two types:

• Type I errors - This is the case where the hypothesis is rejected but is, in
fact, true. You might call this a false positive.

• Type II errors - This is the case where the hypothesis is not rejected but is,
in fact, false. You might call this a false negative.

In the continuous case, the probability of any particular data set, and thus a
particular value for the statistic, is infinitesimally small, so one must refer to a range
to get a finite probability. The conclusion of the hypothesis test is then stated in two
forms: ”If the null hypothesis were true, the statistic would be larger (or smaller)
than the measured value fraction of the time p.” or ”If the null hypothesis were true,
the statistic would be further from its expectation value than the measured value a
fraction of the time p.” By ”time” I mean repeated trials under the condition that the
null hypothesis is correct. The first case is called a one-sided test and the second a
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two-sided test. Which one you use depends on the problem. It can be ambiguous
as to which is appropriate, but usually it is not. p being the p-value also known as
the significance of the test. The smaller it is, the more evidence you have against
the null hypothesis. 1− p is called the confidence level by which Ho is rejected.

The one and two-sided tests require that the statistic be one-dimensional. This
necessarily reduces the perhaps complicated distribution of the data to one number
which is a simplification of the possible ways that the data can disagree with the
hypothesis. A single statistic usually cannot test all aspects of a distribution (see
sufficient statistics). In choosing a statistic, there is usually an implicit or explicit
alternative hypothesis, H1, that differs from the null hypothesis in some way, and a
good statistic distinguishes between them well in that the probability distributions
for the statistic given the two hypotheses do not overlap very much. A statistic is
thus tailored to test one aspect of the data’s distribution.

8.1 Some classical tests

Many classical statistical tests can be found in the literature. These are in the form
of a statistic, which contains both the data and the parameter one is interested in
estimating, which has a known distribution that does not depend on the parameters
of interest. Such a statistic is called a pivot. One uses this distribution to find the
p-value of the measured statistic at a particular parameter value. Where the p-value
is small, the parameter value can be ruled out at the corresponding confidence level.
The region where the p-value is acceptable is the confidence interval or region for the
parameter. It is not always possible to find such a test for a particular problem, but
it can be particularly easy to apply when it is possible.

I will discuss two such cases here and, in some detail, the χ2 test in the following
sections.

8.1.1 mean of two populations are the same

A classic example of a frequentist hypothesis test is the test for the difference between
the means of two populations. The statistic used is

Z =
x1 − x2 − (µ1 − µ2)√

σ2
1

n1
+

σ2
2

n2

(8.1.1)

The null hypothesis is that the means of the populations are some value (µ1 − µ2 =
∆µ). If the data points {x1} and {x2} are normally distributed, then Z is normally
distributed because it is the sum of normally distributed variables. It is easy to
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see that its mean will be zero and its variance 1. A two-tailed test with a Gaussian
distribution can be used to rule out this hypothesis. It is two-tailed because we would
usually consider any significant difference in the means, no matter what the direction,
to be in contradiction to the null hypotheses.

We might not know the measurement errors and need to estimate them from the
data, in which case the statistic

T =
x1 − x2 − (µ1 − µ2)√

S2
1

n1
+

S2
2

n2

(8.1.2)

is used. S2 = 1
n−1

∑
i(xi− x)2 (see 4.2). With the same null hypothesis, this statistic

has very nearly a t-distribution with

ν =

(
S2

1

n1
+

S2
2

n2

)2

(S2
1/n1)2

n1−1
+

(S2
2/n2)2

n2−1

(8.1.3)

degrees of freedom. The hypothesis that the difference in the means is ∆µ can be
tested in the same way as before, but with the t-distribution instead of the normal
distribution.

Problem 39. Two measurements of the Hubble parameter, Ho, are done using
different techniques. One reports Ho = 70± 5 km/s/Mpc and the other Ho = 80± 7
km/s/Mpc. Assuming these are marginalized Gaussian, 1 σ errors, how can you
determine if these measurements are compatible?

What can you conclude if they are not consistent?

8.1.2 the variance of two populations are the same

We might also wonder if two populations have the same variance. You can test this
with the statistic

f =
S2

1

S2
2

(8.1.4)

This is of the form

X2
α/α

X2
β/β

(8.1.5)

where X2
α is a χ2

α distributed variable. In this case α = n1 − 1 and β = n2 − 1.
The distribution of the ratio of two χ2 distributed variables is an F-distribution,
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specifically Fn1−1,n2−1. The pdf is

pF (f) =
αα/2ββ/2fα/2−1

B(α/2, β/2)(αf + β)(α+β)/2
(8.1.6)

where B(α, β) is the beta function. Thus, this is called the F-test for the difference
of two variances. A two-sided test is appropriate for the σ2

1 = σ2
2 hypothesis test.

A high value of f will tend to be high if σ2
1 > σ2

2 so if the alternative hypothesis is
specifically that σ2

1 > σ2
2 you could use an upper one-tailed test.

Problem 40. You work for a company that manufactures widgets. You have
been having problems with your manufacturing process because of variations in the
quality of the chemicals used. You buy these chemicals from two companies, A and
B. You want to test if one of these companies is significantly more reliable than the
other. You take samples from each company and have the concentration of chemical
α measured.

ρAα = [97, 90, 95, 90, 101, 99, 99, 107, 102, 95] (8.1.7)

ρBα = [101, 94, 93, 96, 94, 97, 94, 98, 98, 90, 90, 95] (8.1.8)

Determine if one has a significantly different variance than the other.

In practice, the F-test may be unreliable if the samples are not Gaussian, i.e., it is
sensitive to non-normality. As a result, it might be more of a test of normality rather
than the equality of the variances in some cases. Bartlett’s test is an alternative test
for the equality of variances that is also sensitive to non-normality but somewhat
less so. Levene’s test is yet another test that is purported to be insensitive to non-
normality. There are many specialized hypothesis tests in the literature (and on
the internet) with known or approximatable p-values. If confronted with a specific
problem, it might pay to do some research to find an appropriate test.

8.2 χ2 test for the constancy of a signal

Let us consider a simple case that we have analyzed using Bayesian inference and
see how it is analyzed using hypothesis testing. We (again) have n independent data
points, xi like in the wine example at the beginning of chapter 5.

Let us examine three important but subtly different null hypotheses about this
data set, which will be discussed later in a more complicated form.

Null Hypothesis I The signal is constant, its value is equal to µ, and the errors
are Gaussian distributed with the known variance σ.
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Here µ is some fixed value that is not derived from the data, maybe zero. The
measurement errors are also fixed and known. The likelihood with this hypothesis is

p(xi|µ) =
1

(2π))n/2σn
exp

(
−

n∑
i=1

(xi − µ)2

2σ2

)
(8.2.1)

Let us use the statistic

X2(xxx, µ) =
n∑
i=1

(xi − µ)2

σ2
(8.2.2)

We know from section 3.16 that this statistic is χ2 distributed with n degrees of
freedom. We can calculate X2 with our data and find the cumulative probability up
to this value Fχ2

n
(X2). If this is large, we can say the mean of µ is ruled out at the

1− Fχ2
n
(X2) confidence level.

Null Hypothesis II The signal is constant and the errors are Gaussian dis-
tributed with the known variance σ.

We have relaxed the requirement that the mean has some specific value. For this
hypothesis, we might use a very similar statistic

X2(xxx, x) =
n∑
i=1

(xi − x)2

σ2
(8.2.3)

with the sample mean x = 1
n

∑n
i=1 xi in place of an hypothesized mean. This statistic

will not be χ2
n distributed, however. As we saw in section 4.2 the statistic is χ2

n−1

distributed. This is because one degree of freedom has been lost because of the
constraint that x be the sample mean.

An instructive way to look at the degrees of freedom that will be useful later is
as a projection of the data into subspaces. Consider each possible data set to be an
n-dimensional vector. Consider decomposing the data vector as follows

xxx =

 x1
...
xn

 = x

 1
...
1

+

 x1 − x
...

xn − x

 (8.2.4)

= (xxx · m̂mm)m̂mm+ [xxx− (xxx · m̂mm)m̂mm] (8.2.5)

As in hypothesis I, the vector on the left is Gaussian distributed with n degrees of
freedom. The first vector on the right is the projection of the data vector onto the
m̂mm = (1, 1, . . . )/

√
n vector. I’ll call this the ”mean vector”. It will be in a one-

dimensional subspace and Gaussian distributed with one degree of freedom (There
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will be a factor of n that comes from the magnitude of the vector and reduces the
variance in x to σ2/n). The remaining vector will be in an n−1 dimensional subspace.

Using (8.2.4) the magnitude of the data vector can be expressed as

xxx · xxx = nx2 + (xxx− x) · (xxx− x). (8.2.6)

Using this we can find a relationship between the statistics X2(xxx, µ) and X2(xxx, x),

σ2X2(xxx, µ) = (xxx− µ
√
nm̂mm) · (xxx− µ

√
nm̂mm) (8.2.7)

= xxx · xxx− 2µ
√
n(xxx · m̂mm) + µ2n (8.2.8)

= nx2 + (xxx− x) · (xxx− x)− 2µ
√
n(xxx · m̂mm) + µ2n (8.2.9)

= n(x− µ)2 + (xxx− x) · (xxx− x) (8.2.10)

= n(x− µ)2 + σ2X2(xxx, x). (8.2.11)

Since X2(xxx, µ) is χ2
n distributed (the sum of the squares of n normally distributed

variables) and the first term on the right is χ2
1 distributed since x is a single nor-

mally distributed variable it follows that the last term is χ2
n−1 distributed. The two

parts of the data vector (8.2.4) are orthogonal, so there will be no cross-terms or
cross-correlation between the components. In other words, they are statistically in-
dependent!

We can apply a chi-squared test by calculating X2(xxx, x) and seeing if its χ2
n−1

p-value is small. If it is we reject the hypothesis that the data is constant. In this
case, a one-sided test is advisable because if there is some variation in the data we
would expect X2(xxx, x) to be large rather than small. If X2(xxx, x) is exceptionally small
according to the χ2

n−1-distribution, we have probably overestimated the errors.
This type of hypothesis is akin to doing Bayesian model selection in that it gives

a criterion for rejecting a model irrespective of the specific values of the parameters,
i.e. µ. If the data points were increasing with time, for example, you would expect
X2(xxx, x) to be large, and you would reject hypothesis I.

Null Hypothesis III Given that the signal is constant, its value equals µ, and
the errors are Gaussian distributed with the known variance σ.

This sounds a lot like hypothesis I, but it is not the same. We will not take
into consideration the possibility that the signal is not constant when calculating
the distribution of our statistic. To do this we want a statistic that is not sensitive
to the non-constancy of the signal. A statistic based only on the first part of the
decomposition (8.2.4), the part not included in the previous test, would do exactly
that. We can use the first term in (8.2.11)

X2 =
n∑
i=1

(x− µ)2

σ2
=
n(x− µ)2

σ2
. (8.2.12)
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This is the magnitude of the projection of the data vector onto the mean vector m̂mm, a
one-dimensional space. It has only one degree of freedom and is thus χ2

1 distributed.
This can be used to put constraints on µ by excluding those values of µ whose p-value
is below some threshold, say 5 or 1%.

8.3 The tail of three χ’s

In general, for normally distributed data the likelihood can be written

L(xxx|θθθ) =
1√

(2π)n|CCC|
exp

[
−1

2
(xxx− fff(θθθ))T CCC−1 (xxx− fff(θθθ))

]
(8.3.1)

where fff(θθθ) is the, possibly nonlinear, relationship between the parameters and the
prediction for the data. From this we know that if fff(θθθ) is the correct model

χ2(xxx, θ) = (xxx− fff(θθθ))T CCC−1 (xxx− fff(θθθ)) (8.3.2)

is chi-squared distributed with n degrees of freedom where n is the number of data
points.

For linear models, we can go a bit further. In this case, fff(θθθ) = MMMθθθ, as discussed
in chapter 6. The χ2 can be written as

χ2(xxx,θθθ) = (xxx−MMMθθθ)T CCC−1 (xxx−MMMθθθ) (8.3.3)

=
(
xxx−MMM(θθθ − θ̂θθ)−MMMθ̂θθ

)T
CCC−1

(
xxx−MMM(θθθ − θ̂θθ)−MMMθ̂θθ

)
(8.3.4)

=(θθθ − θ̂θθ)TMMMTCCC−1MMM(θθθ − θ̂θθ) + (xxx−MMMθ̂θθ)TCCC−1(xxx−MMMθ̂θθ) (8.3.5)

− (θθθ − θ̂θθ)TMMMTCCC−1(xxx−MMMθ̂θθ)− (xxx−MMMθ̂θθ)TCCC−1MMM(θθθ − θ̂θθ) (8.3.6)

where θ̂θθ is the maximum likelihood solution

θ̂θθ =
(
MMMTCCC−1MMM

)−1
MMMTCCC−1xxx. (8.3.7)

The terms online (8.3.6) are equal and both are zero. To see this consider

MMMTCCC−1(xxx−MMMθ̂θθ) = MMMTCCC−1
[
III −MMM

(
MMMTCCC−1MMM

)−1
MMMTCCC−1

]
xxx (8.3.8)

=
[
MMMTCCC−1 −MMMTCCC−1MMM

(
MMMTCCC−1MMM

)−1
MMMTCCC−1

]
xxx (8.3.9)

=
[
MMMTCCC−1 −MMMTCCC−1

]
xxx (8.3.10)

= 0 (8.3.11)
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the first term in (8.3.6) contains this factor and the second term contains the transpose

of this which must also be zero. This can be interpreted as the vector yyy = MMM(θθθ − θ̂θθ)
being orthogonal to the vector zzz = (xxx−MMMθ̂θθ) in the sense that zzzTCCC−1yyy = yyyTCCC−1zzz = 0.
This also means they are statistically independent since these vectors are normally
distributed.

So the χ2 can be decomposed into two statistically independent parts,

χ2(xxx, θ) =(θθθ − θ̂θθ)TMMMTCCC−1MMM(θθθ − θ̂θθ) + (xxx−MMMθ̂θθ)TCCC−1(xxx−MMMθ̂θθ) (8.3.12)

=∆χ2(θθθ, θ̂θθ) + χ2
min. (8.3.13)

The second one contains no parameters and is the minimum of χ2(xxx, θ) which is

attained at θθθ = θ̂θθ.
This justifies the factorization of the likelihood that was used in section 10.1,

L =
1√

(2π)n|CCC|
e−

1
2

∆χ2(θθθ,θ̂θθ)e−
1
2
χ2
min . (8.3.14)

The question remains of how these two χ2s are distributed and what they can
be used for. You might think that since each one is constructed out of n normally
distributed numbers they should both be χ2 distributed with n degrees of freedom,
but this is wrong.

The matrix MMM takes any point in parameter space and transforms it to a point
in ”data space”, i.e. xxx = MMMθθθ is an n dimensional vector. But, in an over-determined
problem, the dimension of parameter space, I will call it m, is smaller than n so MMMθθθ
must be in a m dimensional subspace of data space. More accurately, the dimension
is equal to the rank of MMM which is equal to m if it is full rank (see sections 6.5 ). Not
all possible vectors are accessible through MMM .

The pseudo-inverse MMM+ =
(
MMMTCCC−1MMM

)−1
MMMTCCC−1 gives us a way of going from

data space to parameter space. Since it is a linear operator that goes from a higher
dimensional space to a lower dimensional space it must have a null-space in data-
space. In other words, there are vectors in data space that do not have a maximum
likelihood solution in parameter space, and if you add one of these vectors to the data
the maximum likelihood solution, θ̂θθ, will not change.

Now consider the operator

PPP = MMMMMM+ = MMM
(
MMMTCCC−1MMM

)−1
MMMTCCC−1. (8.3.15)

We can think of this as taking a data vector to parameter space and back again. In
the process, the part of the data vector in the null space of MMM+ is lost. It is easy to
see that

PPPPPP = PPP (8.3.16)
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which are the requirements for a projection operators. It is easily verified that it also
has the property

PPP TCCC−1 = CCC−1PPP . (8.3.17)

So PPP projects the data vector onto the subspace of data-space that influences the
parameters and removes the components that do not. PPPxxx = MMMθ̂(xxx) actually contains
m normally distributed variable and not n. Likewise, the complement of PPP , P̄PP ≡
(III − PPP ) is a projection operator that projects into the complimentary subspace and
P̄PPxxx contains n−m normally distributed variable. P̄PP has the same property (8.3.17).
Note that

P̄PPMMM = (III −PPP )MMM =
(

(III −MMM
(
MMMTCCC−1MMM

)−1
MMMTCCC−1

)
MMM = 0. (8.3.18)

Projection operators take a vector and return only its components that are within
its range, the subspace that they are projecting into. They remove any components
that are within its null space. Any data vector can be decomposed into orthogonal
parts

xxx = PPPxxx+ P̄̄P̄Pxxx (8.3.19)

= xxxk + xxxn−k (8.3.20)

where xxxk is in the k dimensional space that ”influences” the model parameters and
xxxn−k is in the n− k dimensional space that is independent of the parameters. This is
a generalization of the projection onto the mean vector we saw in section 8.2.

You can see that χ2
min contains only vectors in the P̄PPxxx subspace and ∆χ2(θθθ, θ̂θθ)

contains only vectors in the PPPxxx subspace,

χ2
min = [(III −PPP )xxx]T CCC−1 [(III −PPP )xxx] =

[
P̄PPxxx
]T
CCC−1

[
P̄PPxxx
]

(8.3.21)

∆χ2(θθθ, θ̂θθ) = [PPPxxx−MMMθθθ]T CCC−1 [PPPxxx−MMMθθθ]T (8.3.22)

MMMθθθ must also be in this subspace, see (8.3.18). The vanishing of the cross terms
in (8.3.6) are a result of the properties of PPP and P̄PP and shows that these subspaces
are orthogonal and statistically independent.

To summarize the geometric interpretation of what is going on here:

• MMM takes a parameter vector to data space, but since these spaces have different
dimensions it cannot cover all of data space and will not be square.

• The matrix
(
MMMTCCC−1MMM

)−1
MMMTCCC−1 takes the data to the best-fit model param-

eters - full data space to parameter space.
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• The matrix PPP = MMM
(
MMMTCCC−1MMM

)−1
MMMTCCC−1 projects the data onto the subspace

that has a direct effect on the parameters of the model. This is a k dimensional
subspace because there are k parameters. The extra MMM goes from parameter
space back to data space.

• The matrix P̄̄P̄P = III − PPP = III −MMM
(
MMMTCCC−1MMM

)−1
MMMTCCC−1 projects the data into

the subspace that does not affect the parameters. These are the degrees of
freedom that are not absorbed by fitting the model.

Problem 41. What form do the projection operators PPP and P̄̄P̄P take in the case
discussed in section 8.2 where the mean µ is the only parameter.

8.4 χ2 testing with linear models

In the case of a linear model, the two χ2’s, χ2
min and ∆χ2(θθθ, θ̂θθ) allow us to make more

precise hypothesis tests in the case of linear models. χ2
min will contain only n − m

normally distributed variables and thus the hypothesis that the model is the correct
one should be rejected according to a χ2

n−m distribution. This contains no specific
parameter values. It is a global hypothesis test on whether the model can be ruled
out irrespective of what the actual parameter values are. This is the kind of test that
is not possible in Bayesian inference. Note that in the nonlinear case, you can do the
same test by finding χ2

min numerically, but its significance should be assessed using a
χ2
n distribution because we don’t know that χ2

min contains only n −m independent
random numbers. This will be a weaker test because the distribution is broader.

∆χ2(θθθ, θ̂θθ) can be used for parameter estimation in the case of a linear model. The
null hypothesis is that ”Given that the model is correct and the errors are normally
distributed, the parameters have values θθθ.” The statistic will be χ2

m distributed, which
is potentially a much stronger statistical test than using the original χ2 as you would
do for a nonlinear model. The ∆χ2(θθθ, θ̂θθ) essentially ignores all the components of the
data that do not influence the fitting of the parameters.

The reduced χ2 or the χ2 per degree of freedom is χ2/n where n is the number
of degrees of freedom. Since the mean of the χ2 distribution is equal to its number
of degrees of freedom, it is expected that the reduced χ2 will be ∼ 1.

Problem 42. Prove (8.3.16) and (8.3.16).

Problem 43. Prove that the range of matrix P̄̄P̄P has dimension k in the following
steps:

1. Show that P̄̄P̄PP̄̄P̄P = P̄̄P̄P and that this implies that all the eigenvalues of P̄̄P̄P are either
1 or 0.
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2. Show that tr
[
P̄̄P̄P
]

= n− k and why this implies that there are k eigenvalues that
are zero and n− k that are one.

8.5 t-test revisited

Consider the following two statistics,

Yn =

√
n

σ

(∑
i

xi − µ

)
(8.5.1)

Zn =
1

σ2
S2
n =

1

σ2

∑
i

(xi − x)2. (8.5.2)

We know that if the x’s are normally distributed with variance σ2 and independent
then Yn ∼ N (0, 1) and Zn ∼ χ2

n−1.
Our considerations of subspaces in data space can be used to show that Yn and

Z2
n are statistically independent. This is because Yn depends only on the component

of the data in the subspace spanned by (1, 1, 1, . . . ), and Zn is independent of this
component. As a result, we can write down the joint probability distribution as the
product of a Gaussian and χ2 distribution,

p(Yn, Zn) = p(Yn)p(Zn|Yn) =

[
1√
2π
e−

1
2
Y 2
n

] [
1

2(n−1)/2Γ((n− 1)/2)
Z

n−3
2

n e−Zn/2
]
.

(8.5.3)

Now consider a statistic made out of the ratio of the statistics Yn and Zn,

T =
Yn√
Zn
n−1

=

√
n (
∑

i xi − µ)√
Sn
n−1

(8.5.4)

Problem 44. By change of variables and marginalization, show that T is t-
distributed with n-1 degrees of freedom.

The statistic T can then be used to test the hypothesis that the distribution of x
has the mean µ. Note that σ2 drops out of the statistic T so it does not need to be
known. Yn and a standard normal distribution could be used to do a hypothesis test
on µ, but σ would need to be known.

The t-distribution also came up in section 5.4 as the posterior distribution for µ
marginalized over σ2.
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8.6 frequentist confidence intervals

Once it has been determined that the best fit linear model has an acceptable χ2
min it

is time to find the error bars, or confidence intervals, for the parameters.
In section 6.1 we found that the posterior for a linear model is a Gaussian centered

on the MLE (equation 6.1.11). It follows that

X2(xxx,θθθ) = X2(xxx, θ̂θθ) + (θθθ − θ̂θθ)TMMMTCCC−1MMM(θθθ − θ̂θθ) (8.6.1)

where the likelihood is

L =
1√

(2π)2|CCC|
e−

1
2
X2(xxx,θθθ). (8.6.2)

You can see that X2(xxx, θ̂θθ) was completely ignored in the Bayesian parameter estimate,
while it is the only part that the global frequentist hypothesis test for the model was
based on. The first term in (8.6.1) will be χ2

n−k and the second one χ2
k.

The boundaries of the confidence region (or interval in one dimension) in θ-space
are drawn on contours of equal likelihood i.e.

(θθθ − θ̂θθ)TMMMTCCC−1MMM(θθθ − θ̂θθ) = constant (8.6.3)

The confidence level is taken from a χ2
k distribution. Note that this is different

from a Bayesian ”credibility region” where the posterior is integrated within the
boundaries of the region. We can look at this as marginalizing over all the modes of
the data that do not affect the model fit and then using the modes that do affect the
fit to constrain the model.

The simplest example is from our problem of finding the mean. Here

X2 =
n∑
i

(xi − µ)2

σ2
(8.6.4)

=
n∑
i

(xi − x)2

σ2
+

(µ− x)2

σ2/n
(8.6.5)

The first part we saw before for testing if the signal is constant in section 8.2. The
second part will be χ2

1 distributed. Fχ2
1
(4) = 0.954 so 95.4% confidence interval for µ

is x− 2σ√
n

to x+ 2σ√
n

or usually written µ = x± 2σ√
n
(95% cf).

Note that this does not mean that the mean has a 95% chance of being within
this range. It means that if the mean where outside of this range the probability of
getting a sample mean that is further away than was measured is less than 5%. (Kind
of a convoluted statement really).
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In general, if we gave a goodness-of-fit statistic t(D;θθθ) which is a function of the
data D and the parameters θθθ we find the confidence regions by plotting the contours
of of the p-value at typically 0.68, 0.95, 0.99 as a function of the parameters θθθ. In the
case of a one-sided test these are contours of the cumulative distribution F [t(D;θθθ)].
In the case of a symmetric two-sided test, F [t(D;θθθ)] − F [−t(D;θθθ)]). In general,
t(D; θ) could be any function that you would expect to be small (large) when the
data fits the model well and large (small) when the data does not fit well (either in
size or absolute value). Classical statistics may have known distributions, F [t]. The
distribution of other statistics can be estimated by Monte Carlo, but this can be very
time-consuming since it needs to be done for every parameter set θθθ to map out the
confidence levels.

Problem 45. Show that (8.6.3) is a function of only the xxxk components of xxx.

8.7 nuisance parameters

In Bayesian statistics, nuisance parameters are dealt with by marginalization, inte-
grating the posterior over them to find the marginal posterior of the parameters of
interest. In frequentist statistics, one must maximize the p-value with respect to the
nuisance parameters while keeping the other parameters fixed. In the case of a one-
tailed χ2 test, this would mean minimizing χ2. The null hypothesis in this case is that
the parameters of interest are some particular values. To rule out this hypothesis you
must take the best-case scenario for the nuisance parameters, the one that maximizes
the probability of the best-fit statistic, and show that it is not good enough. So if
the maximum p-value is 5% you can rule out the model at 95% confidence no matter
what the values of the nuisance parameters are.

If we are interesting in the constraints on some parameters θθθ irrespective of some
other parameters βββ then we must use the goodness-of-fit statistic that minimizes the
p-value with respect to βββ for a fixed value of θθθ. Symbolically

T (xxx,θθθ) = min
p on βββ

T (xxx,θθθ,βββ) (8.7.1)

In the case of a one-sided χ2 test this is

χ2 (xxx,θθθ) = min
βββ
χ2(xxx,θθθ,βββ). (8.7.2)

In the case of a linear one-sided χ2 test,

∆χ2
(
θθθ, θ̂θθ
)

= min
βββ

∆χ2(xxx,θθθ,βββ, θ̂θθ, β̂ββ). (8.7.3)

This will have the number of degrees of freedom equal to the number of parameters
in θθθ, typically 2 or 1.
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8.7.1 Frequentest confidence and Bayesian credibility regions

As we have seen, the Bayesian credibility region represents a fraction of the posterior
probability. It says ”There is a X% probability that the parameter is within this
region.” One can define a credibility region for one parameter or a subset of the pa-
rameters by integrating, or marginalizing, over the other parameters. This is because
the rules of probability require this.

The frequentist assigns no probability to parameters. If the true parameter value
is outside the confidence region then there would be less than a X% chance of getting
data that fit the model worse than was measured. The region does not represent a
probability directly. Integrals in parameter space have no meaning from a frequentist
point of view. To finding the confidence region for a subset of parameters is equivalent
to projecting the boundary of the confidence region onto the parameters. When we
say that if the value of parameter θ1 = x is not likely to produce the observed data
we mean that this is true no matter what the other parameter values are. So we
must take the values for the other parameters that produce the largest probability of
producing the observed data given that θ1 = x.

8.8 Likelihood ratios and model testing

The likelihood ratio is a more general statistic than χ2 for hypothesis testing within
nested models. The situation often arises where one must determine if one or more
additional parameters are required or justified by the data. If these additional param-
eters take some specific fixed values in the initial model (often zero), they are called
nested models. The likelihood ratio statistic can be used to test whether additional
model parameters are justified.

The null hypothesis Ho is that the parameters are within some region Ωo within
some larger parameter space Ω. Ωo could be a single point in parameter space or a
region. If Ho is true, we would expect the maximum of the likelihood within Ωo to be
close to or equal to the maximum within the whole space Ω. This suggests making a
statistic out of the ratio of the maxima,

λ = −2 ln

[
L(xxx|θ̂θθo)
L(xxx|θ̂θθ)

]
(8.8.1)

where θ̂θθo are the parameters that maximize the likelihood within the region Ωo and
θ̂θθ are the global maximum likelihood parameters within Ω. Since L(xxx|θ̂θθo) ≤ L(xxx|θ̂θθ),
λ will always be positive. If θ̂θθ lies within Ωo or the likelihoods are equal, then λ = 0,
signifying that there is no reason to choose one over the other.
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In this case, there is an alternative hypothesis H1: the parameters lie outside of
Ωo but still within Ω1.

For a Gaussian linear model with known covariance, it is easily shown that

λ = ∆χ2(θ̂θθo, θ̂θθ) = (θ̂θθo − θ̂θθ)TMMMTCCC−1MMM(θ̂θθo − θ̂θθ) (8.8.2)

which is χ2
|k−ko| distributed where k is the dimension of Ω and the ko is the dimension

of Ωo.
An example is when we have a linear model with k − 1 parameters, and we are

deciding if it is justified to add an additional parameter. Think of fitting a polynomial
of order k− 1 to some points. The null hypothesis is that there are k− 1 parameters.
The additional parameter has some specific value in the simpler model, usually zero,
as is the case for regression with polynomials. θ̂θθ is the maximum likelihood solution,
including this extra parameter. Suppose the MLE for this extra parameter differs
from its value in the simpler model by more than the expected error. In that case,
you can conclude that including these extra parameters is justified. This is done by
ruling out the simpler model with the p-value calculated by comparing λ, (8.8.2), to
a χ1 distribution.

Wilk’s theorem states that as the sample size goes to infinity, λ will always
approach χ2

k−ko distributed as long as the θ̂θθo does not lie on a boundary of Ω. This
is a justification for using the λ statistic for model selection whenever the amount of
statistically independent data is large.

example: parameter constraints

The ∆χ2 parameters constraints we have already seen are a special case of a likelihood
ratio test. The null hypothesis is that the parameters are the specific values θθθ. The
alternative hypothesis is that they have some other values. Ωo has dimension zero
so ko = 0 and Ω is the full parameter space with dimension k. The covariances are
known.

λ = ∆2(θθθ, θ̂θθ) ∼ χ2
k (8.8.3)

If you are constraining only some parameters and leaving others free, then θθθ would
be replaced with the maximum likelihood parameters while keeping fixed values for
the parameters of interest.

example: unknown variances

Likelihood ratios are applicable to nonlinear models as well. The difficulty is deter-
mining the distribution of λ in these cases. A case where the distribution can be
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found is for a Gaussian likelihood

L(xxx|µµµ, σ) =
1

(2πσ2)n/2
exp

[
−
∑

i(xi − µ)

2σ2

]
(8.8.4)

where σ are unknown and Ho is that µ is some specific value.
It can be easily found that

λ = n ln

[
1 +

n(x− µ)2∑
i(xi − x)2

]
= n ln

[
1 +

t2

n− 1

]
(8.8.5)

where t is t-distributed with n − 1 degrees of freedom. For a value of λ, a value of
t can be found. Its p-value can then be used to test Ho. So the likelihood ratio test
reduces to a t-test in this case. This same test can be applied to the case where there
are covariances.

example: detection

Another example that is very relevant to astronomy is the detection of an object in
a noisy image (star, galaxy, supernovae, etc.) or the detection of a spectral line in a
spectrum. The null hypothesis is that there is no object (line). Multiple parameters
may be associated with the object (position, flux, profile, time, etc.). These are not
all linear parameters, but we can do a likelihood ratio test with these parameters
fixed so that the test will be contingent on them. Later we might scan through the
contingent parameters to see if an object is detected for some particular position and
profile.

Let us consider a simple case where we have a known background that has been
subtracted. We are trying to detect an object with profile wi where the contribution
from the source in the ith pixel is fwi, f is the total flux and our parameter. The
profile is normalized so that

∑
iwi = 1. This could be the case of a spectral line in

a spectrum or a source in an image. The profile is the convolution of the intrinsic
profile of the object and the PSF.

The null hypothesis is that there is no object and f = 0. This has the likelihood

Lo =
[
2πσ2

]−n/2
e−

∑
i x

2
i

2σ (8.8.6)

The H1 likelihood is

L1 =
[
2πσ2

]−n/2
e−

∑
i(xi−fwi)

2

2σ . (8.8.7)

The MLE for f is

f̂ =

∑
i xiwi∑
iw

2
i

. (8.8.8)
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After some algebra you will find that

λ =
(
∑

i xiwi)
2

σ2
∑

iw
2
i

∼ χ2
1. (8.8.9)

A large value of λ would signify a detection. It is commonly stated the object is
detected at x ”sigma” where x is the value of λ.

A simple extention of this is the case where the background is not known. The
MLE, θ̂θθ, for the background parameters must be found with and without the object
using the solution (6.1.9). Since the model with the object still contains only one
extra parameter, λ should be compared to a χ2

1 distribution.

8.9 Nonlinear χ2 testing and global tests with other

goodness-of-fit statistics

We have seen that when the model is linear and the data is normally distributed,
a global goodness-of-fit test can be done with χ2(xxx, θ̂θθ) by comparing it to a χ2

n−k
distribution. What about the case of a nonlinear model? In this case, the parameter
set that maximizes χ2(xxx,θθθ), θ̂θθ, can be found (numerically usually), but there is no

reason to think that χ2(xxx, θ̂θθ) will be χ2
n−k distributed. A global goodness-of-fit cannot

be done in the same way.

It is still true that

χ2(xxx,θθθ) = (xxx− fff(θθθ))TCCC−1(xxx− fff(θθθ)) (8.9.1)

will be χ2
n distributed even when fff(θθθ) is nonlinear. If the minimum of this function

occurs at θ̂θθ then it must be that χ2(xxx,θθθo) ≥ χ2(xxx, θ̂θθ) where θθθo are the true values for
the parameters. It follows that an upper limit on the one-sided p-value for the true
model, α, can be found

α = 1− Fχ2
n

(
χ2(xxx,θθθo)

)
< 1− Fχ2

n

(
χ2(xxx, θ̂θθ)

)
. (8.9.2)

This means that if the model with parameters set to θ̂θθ can be rejected with a χ2
n test

at some confidence level then the true model can be rejected at a higher, although
unknown, level. You can thus use the χ2

n p-value for with θθθ = θ̂θθ to reject the entire
model, but the confidence level will not have the same meaning as it did in the case of
a linear model. Generally, this will also be a less powerful test than in the linear case
since the χ2

n distribution extends to larger values than the χ2
n−k distribution does.
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For a nonlinear model the equation for the maximum,

∂χ2

∂θα
= 0, (8.9.3)

does not necessarily consist of k independent equations. An example (from Andrae
et al., 2010) that illustrates how different fitting a nonlinear model can be from fitting
a linear model is the case of fitting

y = A cos(ωx+ xo) (8.9.4)

to y and x values where A, ω and xo are the parameters. This model can fit any
data set perfectly as long as there are no repeated values of x, so the minimum χ2

will always be zero. The model is effectively undetermined even though there may be
many more data points than parameters. There is no concept of the reduced number
of degrees of freedom for χ2

min. However, χ2(A, ω, xo) is still χ2
n distributed. The

best-fit parameters can be rejected based on a left-sided hypothesis test! A perfect
fit is improbable given that there is noise. There is a region of (A, ω, xo)-space where
χ2(A, ω, xo) has reasonably probable values and a region where it has improbable
values so χ2 parameter estimation can be done.1

Many have been tempted to argue that the log-likelihood near the MLE can be
expanded:

lnL(xxx,θθθ) ' lnL(xxx, θ̂θθ) +

[
∂2 lnL
∂θi∂θj

]
θθθ=θ̂θθ

(θi − θ̂i)(θj − θ̂j) + . . . (8.9.5)

This has the appearance of a Gaussian χ2 like (8.3.12) so, it is argued, the linear χ2

tests can be applied as long as this expansion is accurate. However, in the linear case
the coefficients of the second order term, MMMTCCC−1MMM , are constants. In the nonlinear
case they are evaluated at θ̂θθ which makes them random variables. It is generally not
justified to do a χ2 test with reduced degrees of freedom when the model is nonlinear.
However, as explained in section 12.6, as the amount of independent data points
increases, under certain conditions on the likelihood, the MLE becomes normally
distributed with a mean equal to the true parameter values. In this case, the statistic
∆χ2(θθθ) ≡ χ2(θθθ) − χ2(θ̂θθ) could be used with n − k degrees of freedom and a χ2 test
between nested models with numbers of parameters can be done. In more generality,
there are numerical methods to solve this problem.

1Note that this is not the case of fitting the discrete Fourier transform (DFT) because in that
case ω and xo are not parameters.
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8.10 Numerical Goodness-of-fit

We can generate random data sets from a normal or other distribution, but to do
this we generally need to assume some values for the parameters. The distribution
of the data sets or statistics calculated from them would be appropriate for only one
specific parameter set not for a global goodness of fit. We could assume the MLE
parameters, but these are a function of the data and will have their own distributions.
This problem applies to the nonlinear χ2 test and, more generally, to testing any model
where the distribution of the goodness-of-fit statistic depends on parameters.

Fortunately, there exists a simple Monte Carlo (parametric bootstrap) procedure
for approximating the significance of these statistics for a whole family of models.
The procedure goes like this:

1. Make a fake data set D∗ with the maximum likelihood model θ̂θθ.

2. Find the best-fit parameters for this data set θ̂θθ
∗
.

3. Calculate the goodness-of-fit statistic Â∗ = A(D∗; θ̂θθ
∗
)

4. Repeat 1-3

5. Compare the cumulative distribution of Â∗ to the observed Â to find its signif-
icance.

It can be shown that under very general conditions the limiting distribution (n→∞)
of Â∗ is the same as Â (Babu & Rao, 2004). There also exist bootstrap methods for
doing this calculation. This procedure strongly resembles Bayesian model checking
which is discussed, and more clearly justified, in section 10.3.

8.11 Sufficient & ancillary statistics

We have investigated χ2 hypothesis testing with linear models in some detail now. It
illustrates many principles that can be applied more generally. One example is the
difference between sufficient statistics and ancillary statistics.

A statistic, t(ddd) is called a sufficient statistic for a parameter θ if it contains all
the information in the data, ddd, about that parameter. If t(ddd) is an estimator for a
parameter θ, the distribution of any other estimator u(ddd) given t(ddd), p(u|t), will be
independent of θ. If t((ddd) is known, there is no additional information in the data
about the parameter.
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The factorization theorem holds that if t(ddd) is sufficient for θ the likelihood can
be written

P (ddd|θ) = f(ddd)g (t(ddd)|θ) . (8.11.1)

The inverse is also true, if the likelihood can be factored in this way then t(ddd) is
sufficient.

We have already seen in chapter 5 that the likelihood for independent Gaussian
distributed data can be written in terms of only the sample mean, x and sample
variance, ∆2, so these are sufficient statistics in this case. You can see that from a
Bayesian point of view the function f(ddd) would drop out of the posterior and the data
would not be there except through the sufficient statistics.

An ancillary statistic is in a sense the opposite. If u(ddd) is ancillary its distribution
is not dependent on any of the parameters,

P (ddd|θ) = f (u(ddd)) g (ddd|θ) (8.11.2)

As we have seen, in the Gaussian / linear case the

−2 lnL(ddd|θθθ) = X2(ddd,θθθ) + const. (8.11.3)

= X2(ddd, θ̂θθ(ddd)) +X2(θ̂θθ(ddd), θθθ) + const. (8.11.4)

So X2(ddd, θ̂θθ(ddd)) is an ancillary statistic and X2(θ̂θθ(ddd), θθθ) is sufficient for the linear pa-
rameters.

A sufficient statistic can be used to do parameter estimation and an ancillary
statistic can be used to do a global goodness-of-fit or model selection tests. However,
it is not required to have an ancillary statistic to do a goodness-of-fit test, although
it does simplify the test considerably.
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Chapter 9

Other hypothesis tests

In this chapter, we look at some other hypothesis tests that are commonly used.
These tests use something other than χ2 as a goodness-of-fit statistic or use χ2 as an
approximation for some other statistic.

9.1 Pearson’s correlation coefficient

Let us consider the problem of determining if two variables are correlated. For ex-
ample, are body weight and life expectancy correlated or is the average age of stars
correlated with the size of the galaxy they are in? Pearson’s correlation coeffi-
cient is

rxy =

∑n
i (xi − x)(yi − y)√∑n

i (xi − x)2
∑

i(yi − y)2
(9.1.1)

If the variables are uncorrelated, we would expect, just through symmetry, this statis-
tic to be zero on average. The quantity

t = r

√
n− 2

1− r2
(9.1.2)

is t-distributed with n− 2 degrees of freedom if the xi’s and yi’s are independent and
normally distributed. This can be used to perform a hypothesis test for the absence
of correlations. However, if the data is not normally distributed, you cannot evaluate
the significance of the statistic in this way.

To test a nonzero correlation, Fisher’s transform of r

F (r) =
1

2
ln

(
1 + r

1− r

)
(9.1.3)

159
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is used to perform hypothesis tests. This statistic is more normally distributed for a
range of distributions

F (r) ∼ N
(
F (ρ), σ2 =

1

n− 3

)
(9.1.4)

This can be used to test the hypothesis that the sample pairs are drawn from a
multivariate normal distribution with correlation ρ = Cxy/

√
CxxCyy where CCC is the

covariance matrix.

9.2 Comparing data to a distribution

Let us return to the problem of determining how some measurements, such as star
luminosities or photon energies, or just any noisy data, are distributed. We tackled
this problem with Bayesian parameters estimation already. In the frequentist context,
we can ask not only what the parameters of the distribution are, but also whether the
data is consistent with the model distribution at all. For example, We might ask if
our data really is consistent with being normally distributed instead of just assuming
that is the case.

9.2.1 Q-Q plot

A quick and dirty, but often very effective, way to compare the distribution of some
one-dimensional data to a model distribution is to make a Quantile-Quantile plot.
If the sorted data is xi, and the cumulative distribution is F (x), then the Q-Q plot
is i/n vs F (xi). i/n should be an approximation of the cumulative distribution, so
in the limit of large sample size, this curve should converge to a line from (0, 0) to
(1, 1). Figure 9.1 shows an example. If the sample size is small and/or the models
being compared are not very different, it might not be so clear which model is better.
It helps to do some simulations to see what is expected for a particular distribution
and sample size. As is, the Q-Q plot does not provide a quantitative reason to reject
or accept a model distribution but can be used as a qualitative aid to diagnose what
is the biggest disagreement between the model and data.1

9.2.2 Binned data χ2 test

One option for determining the distribution of data that is commonly used in astron-
omy is to bin the data, divide the range of the data into intervals, and count the

1You could think of several ways of making this into a quantitative discriminator. They would
probably be equivalent to or related to the standard tests that are discussed later in the section.



9.2. COMPARING DATA TO A DISTRIBUTION 161

Figure 9.1: Quantile-Quantile plot. The data was drawn from a lognormal distribu-
tion with n = 200. A normal and lognormal distribution are compared. You can
see that the correct distribution gives a curve that is much closer to the y = x line.
For a smaller sample size, the agreement might not be so clear. The flaring of the
normal curve is a reflection of the normal distribution predicting more points below
the minimum data point (F (x1) ' 0.2 for the smallest data point) and less for the
larger values that are in the sample (F (x) goes to one well before the largest data
point).
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number of data points in each bin. Let’s say there are ni observations in bin i and N
measurements in total. Our model predicts that the probability of a given measure-
ment being in bin i is pi. The numbers in each bin will be distributed according to
the multinomial distribution (section ??):

P ({ni}|N, {pi}) =
N !∏k
i=1 ni!

k∏
i=1

pnii (9.2.1)

Under the assumption that the number of counts in each bin is large, we can use
Sterling’s approximation to simplify the probability

lnP ({ni}|N, {pi}) = ln(N !) +
k∑
i

[ni ln (pi)− ln (ni!)] (9.2.2)

' N ln(N)−N +
k∑
i

[ni ln (pi)− ni ln (ni) + ni] (9.2.3)

= N ln(N) +
k∑
i

[ni ln (pi)− ni ln (ni)]
∑
i

ni = N

(9.2.4)

Sterling’s approximation has been used, so we have assumed that there are a large
number of counts in each bin.

The mean and variance of the number counts are

E[ni] = Npi V ar[ni] = Npi(1− pi) (9.2.5)

We can expand the log probability around the average number counts using

lnP (ni = Npi) = N ln(N) +
k∑
i

[Npi ln (pi)−Npi ln (Npi)] (9.2.6)

= 0
∑
i

pi = 1 (9.2.7)

[
∂

∂ni
lnP ({ni})

]
ni=Npi

= [ln(pi)− ln(ni)]ni=Npi = − lnN (9.2.8)

[
∂2

∂n2
i

lnP ({ni})
]
ni=Npi

=

[
− 1

ni

]
ni=Npi

= − 1

Npi
(9.2.9)
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So, the expansion is

lnP ({ni}) ' − lnN
∑
i

(ni −Npi)−
∑
i

1

2Npi
(ni −Npi)2 +O

[
(ni −Npi)3]

(9.2.10)

= −
∑
i

1

2Npi
(ni −Npi)2 +O

[
(ni −Npi)3] using

∑
i

ni = N ,
∑
i

pi = 1

(9.2.11)

So we can approximate the distribution of each ni as being Gaussian, so

X2 =
k∑
i=1

(ni −Npi)2

Npi
(9.2.12)

will be approximately χ2
k−1 distributed because the one constraint that N =

∑
i ni.

So, a χ2 test can be used to see if a particular distribution is consistent with
the counts. However, this approximation is only valid if all the ni are large. If this
approximation is invalid, you could use this statistic but find its distribution using
Monte Carlo, as discussed in a later chapter. Note also that binning the data always
results in a loss of information and possibly a dependence on the usually arbitrary
choice of bin boundaries. Setting the bins based on a criterion derived from the data
(for example, an equal number of observations in each bin or no less than 10 in a bin)
can invalidate the test’s significance.

9.2.3 Kolmogorov-Smirnov test

It is generally bad practice to bin data if it can be avoided. The Kolmogorov-Smirnov
(KS) test is another frequentist test used to test if the data came from a particular
distribution or whether two data sets came from the same distribution. It does not
require binning the data, which is an advantage over the test that was just discussed.
This test and the ones in the next two sections are often used to test normality, i.e.,
consistency with the data being normally distributed. More generally, they can be
used to test consistency with any distribution, including luminosity functions, energy
distribution functions, black-body spectrum, etc.

Consider the empirical distribution function

F̂n(x) =
1

n

n∑
i=1

Θ(xi ≤ x) (9.2.13)

F̂ (x) is an unbiased estimator of the cumulative distribution, F (x) so in the limit
of n → ∞ we would expect F̂n(x) to converge to the true cumulative distribution,
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F (x). It will be a series of steps for a finite number of points. It is generally better
to base statistical arguments on this rather than the commonly used alternative, a
histogram, because of this property and its being independent of binning.

The KS statistic is

Dn = max
x
|F̂n(x)− F (x)| (9.2.14)

i.e., the largest vertical distance between the sample and cumulative distributions. 2

Kolmogorov and Smirnov found that the distribution of this statistic is

lim
n→∞

P (
√
nDn ≤ t) = H(t) = 1− 2

∞∑
i=1

(−1)i−1e−2i2t2 (9.2.15)

for large n. This is independent of the distribution being tested F (x).

The KS test is widely used, but as we will see, there are modifications to this
test that are more sensitive for most distributions. The KS statistic takes the largest
distance between F̂n(x) and F (x), and because of this, it is not sensitive to differences
in the tails of the distribution.

9.2.4 two sample KS test

The hypothesis is that both data sets come from the same data distribution. Let’s say
the empirical cumulative distributions for these two samples are F̂n(x) and Ĝm(x).
The statistic is the maximum vertical distance between the two sample cumulative
distributions

Dmn = max|F̂n(x)− Ĝm(x)| (9.2.16)

This statistic is distributed like

lim
n→∞

P

(√
mn

m+ n
Dmn ≤ t

)
= H(t) (9.2.17)

for large n.

2Note on notation: In statistics literature, you will sometimes see the operator supx instead of
maxx. The difference is subtle. sup stands for ”supremum, ” the smallest number larger than the
argument within the allowed range.
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9.2.5 Cremér-von Mises test

Like the KS test, this test seeks to test the consistency of data with a given distribu-
tion, but uses the statistic

TCM = n

∫ ∞
−∞

dF (x)
[
F̂ (x)− F (x)

]2

(9.2.18)

=
1

12n
+

n∑
i=1

(
2i− 1

2n
− F (xi)

)2

(9.2.19)

where x1, . . . , xn are the sorted data points. The significance can be looked up using
any decent computer statistical package. This can also be used to compare two
distributions with a different significance level.

9.2.6 Anderson-Darling test

Another variation on this test that is usually more sensitive than either the KS or
the Cremér-von Mises test is the Anderson-Darling test, which uses the statistic

A2
AD = n

∫ ∞
−∞

dF (x)

[
F̂n(x)− F (x)

]2

F (x) [1− F (x)]
(9.2.20)

= −n−
n∑
i

2i− 1

n
[ln (F (xi))− ln (1− F (xn+1−i))] (9.2.21)

Again, you need to look up the significance of the statistic using a software package,
Note that this test and the ones before compare one specific distribution to the

data. They do not compare a family of distributions to the data. For example, as
stated, they do not test if your data is consistent with any normal distribution; they
just test the normal distribution you test with a fixed mean and variance. However,
they can be modified to test for consistency with a family of distributions. This can
be done by fitting for the best parameters and then using Monte Carlo or bootstrap
sampling to find the significance of the statistic (see section 8.10). Alternatively, a
modification of the Anderson-Darling test exists for normality in general.

These statistics can also be interpreted as measures of the ”distance” between two
distributions. We will return to this concept in a later chapter.

9.3 Rank statistics

In many of the statistics we have talked about so far we have had to assume the data
was Gaussian distributed or hope that this is a good approximation in some limit.
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Rank statistics avoid any requirement on how the data is distributed accept that data
points must be independent. They do this by using the rank of the data rather than
the values directly. If the data is sorted from least value to largest value, the rank
of a data point is where it appears in this list. In other words, if a data point xi has
a rank Xi, there are Xi − 1 data points with smaller values. The advantage of using
the rank is that we already know its distribution without knowing the underlying
distribution of the data values xi (assuming they are independent). Xi for a random
data point has an equal probability of being any number between 1 and n, the number
of data points. Because rank-based statistics do not depend on normality, they are
known as more robust than those dependent on normality (more on this later). They
might not be as efficient (have a smaller variance for the same amount of data) when
the data is Gaussian distributed, but they won’t go catastrophically wrong when the
data is not Gaussian distributed.

9.3.1 Spearman’s correlation coefficients

Here, we revisit the problem of determining whether two sets of data points, xi and
yi, are correlated. We already met Pearson’s correlation coefficient

rxy =

∑n
i (xi − x)(yi − y)√∑n

i (xi − x)2
∑

i(yi − y)2
(9.3.1)

Spearman’s correlation coefficient is the same thing, but using the ranks, Xi

instead of the values xi,

rs =

∑n
i (Xi −X)(Yi − Y )√∑n

i (Xi −X)2
∑

i(Yi − Y )2

(9.3.2)

This can be simplified by considering that the mean and variance of the ranks are
always the same. Using these well-known sums

X =
n∑
i=1

Xi =
n∑
i=1

i =
1

2
n(n+ 1) (9.3.3)

and
n∑
i=1

X2
i =

n∑
i=1

i2 =
1

6
n(n+ 1)(2n+ 1) (9.3.4)

The variance of both Xi and Yi are

VX = XY =
1

n

∑
i

(Xi −X)2 =
(n2 − 1)

12
(9.3.5)
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After some algebra

rs = 1− 6

n(n2 − 1)

∑
i

(Xi − Yi)2 (9.3.6)

Problem 46. Show that (9.3.6) is true.

Spearman’s statistic is usually used with the null hypothesis that the variables
are uncorrelated, i.e., to show that this hypothesis can be ruled out. To do this, we
will need the p-value or cumulative distribution of rs when there are no correlations.
The average 〈rs〉 = 0. This should be clear from the original definition (9.3.1). As
far as I know, no exact analytic calculations exist for the distribution of rs. Still, you
can find the exact significance of a value of rs by a permutation test. If we sort
the xi’s and there are no correlations, then any order of the yi’s should be equally
probable. We can calculate rs for every possible permutation of the Xi’s and see how
many of those permutations have an rs larger than the measured one. Of course, the
number of permutations is n!, which can get computationally expensive for large n.
Figure 9.2 shows the results of this calculation for several values of n.

The permutation test, or a variation on it, is an option for calculating the sig-
nificance of a statistic when all possible outcomes of the experiment given the null
hypothesis are equally likely, discrete, and finite in number (or, more practically,
small enough in number to be calculated). We encountered a similar situation in
section 7.1.1 when we discussed bootstrap resampling. There is a finite number of
bootstrap samples, so if the number of data points is small, these can all be calcu-
lated. This is not usually the case, and sampling from them randomly is usually done
to approximate the complete sum over bootstrap samples. The same could be done
here if the number is large. However, in this case, some approximate solutions exist
for large n.

It can be shown that

z =

√
n− 3

1.06
arctanh(rs) (9.3.7)

is approximately N (0, 1) distributed. This is known as the Fisher’s z-transformation.
It is also true that

t = rs

√
n− 2

1− r2
s

(9.3.8)

is approximately t-distributed with n− 2 degrees of freedom.
One disadvantage of using rs is that it is a biased estimator for the true correlation

ρ when it is not zero.
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Figure 9.2: The distribution of Spearman’s correlation coefficient, rs, calculated under
the hypothesis that there are no correlations by using all permutations of the ranks
for one of the variables.
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9.3.2 Kendall’s correlation coefficient

Another rank statistic that is used for detecting correlations is Kendall’s τ . Let’s say
we sort the data points xi so that their ranks are Xi = {1, 2, . . . , n}. If the variables
are perfectly correlated, then Yi will be the same. If they are perfectly anti-correlated
then Yi = {n, n − 1, . . . , 1}. Let us define Q as the number of pairs of Yi’s that are
out of order and the number of inversions. In other words, if

hij =

{
1 Yi > Yj
0 otherwise

(9.3.9)

then

Q =
∑
i<j

hij (9.3.10)

So for Yi = {1, 9, 6, 7, 5} Q = 5. Kendall’s correlation coefficient is

τ̂ = 1− 4Q

n(n− 1)
(9.3.11)

For Q = 0, perfect correlation, τ̂ = 1 and for perfect anti-correlation Q = n(n− 1)/2
and t = −1 and, as we expect for a correlation coefficient, the expectation value for
uncorrelated data is 〈t〉 = 0.

For the null hypothesis that the variables are not correlated, we can calculate the
distribution by calculating it for all permutations of Yi as we did for Spearman’s rs.
This calculation for some small values of n is displayed in figure 9.3. You can see from
this plot that the distribution of t approaches normality more quickly with increasing
n than rs does. It also has a smaller variance. ˆtau is essentially normally distributed
for n > 10 with a variance of

σ2
τ =

2(2n+ 5)

9n(n− 1)
(9.3.12)

The population statistic τ̂ is an estimator of τ . It is unbiased, τ = 〈τ̂〉. A
disadvantage of τ is that τ might be hard to interpret. In the case of a multivariant
Gaussian, it can be shown that

τ =
2

π
arcsin(ρxy). (9.3.13)

9.3.3 Wilcoxon’s U test

Wilcoxon’s U test (also called the Mann-Whitney test, Wilcoxon-Mann-Whitney
test or rank-sum test) is a test for the equality of the means of two samples. In
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Figure 9.3: The distributions of Kendall and Spearman’s correlation coefficients are
calculated under the hypothesis that there are no correlations by using all permuta-
tions of the ranks for one of the variables.
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section 8.1.1, we saw a test for the difference of the means that relied on the underly-
ing distributions being Gaussian. We can avoid this assumption without losing much
efficiency by constructing a statistic out of ranks.

We have two samples, xi and yi. We hypothesize that they come from the same
distribution. We can put them together into one sample zi and sort them. If they
are taken from the same distribution, we would expect the xi’s to appear randomly
in the list, i.e., the ranks of one data set should be uniformly distributed. Several
equivalent statics are used for this. There is simply the sum of the ranks

W =
∑

Xi (9.3.14)

where Xi is the rank for the combined sample X and Y . It is also common to use

U =
nx∑
i

Xi −
1

2
nx(nx + 1) (9.3.15)

U is always between 0 and nxny. The significance of this statistic can again be
calculated by calculating it for all permutations of the ranks or, for larger n, by
Monte Carlo, but it becomes quite close to normally distributed for only nx, ny

>∼ 8
with a mean and variance

〈U〉 =
nxny

2
(9.3.16)

σ2
U =

1

12
nxny(nx + ny + 1) (9.3.17)

Problem 47. Show that U is in the range [0, nxny].

9.4 Bias and Statistics

In the Bayesian method, we find the posterior for the parameters given the data. We
can summarize this distribution by finding its mean, mode, variance, etc. These are
statistics of the parameters, although the probability distribution contains only the
one data set that was observed. We are not concerned with repeated trials or the
limit with an infinite amount of data.

In the frequentist approach, a statistic is formed from the data. Sometimes, this
statistic is meant to be an estimate of a parameter in the model. In this case, it is
an estimator. We don’t expect this estimator to equal the true value for every data
set. If the average of this estimator, over all possible data sets of the same size, is not
equal to the true value, the estimator is biased. If we increase the amount of data,
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this bias will become smaller if our estimator is a good one. If the bias goes to zero
for an infinitely large data set, we say it is asymptotically unbiased.

For our linear model, the MLE is, of course, linear in the data, so if the model
is the correct one, the MLE will be unbiased in this case. If the model is not linear
or the true model contains more or fewer parameters than the model being fit, the
parameter might be biased.

To illustrate these concepts, let’s say we have a model, f(θθθ) = yyy, which relates
some parameters θθθ to some measurable quantities yyy. Now, through some theoretical
ingenuity, you are able to invert the model to get f−1(yyy) = θθθ. You might think that
the best choice for an estimator would be θ̃θθ = f−1(ddd) where ddd are the measured values
of the yyy observables. But the data has noise in it, so if f is not linear and the noise,
nnn is additive 〈

θ̃θθ
〉

=
〈
f−1(ddd)

〉
=
〈
f−1(yyy + nnn)

〉
6=
〈
f−1(yyy)

〉
(9.4.1)

even if 〈nnn〉 = 0. The estimator θ̃θθ is biased.
For a simple example, let’s say we want to measure the kth power of y. The

estimator θ̃k = dk would have an average of〈
θ̃k

〉
=
〈
(y + n)k

〉
=

n∑
i=0

(
n

i

)
yi
〈
nk−i

〉
(9.4.2)

For k > 2, this would be a rather bad estimator.



Chapter 10

Bayesian model selection & model
checking

In chapter 5 we considered Bayesian inference or parameter fitting. In section7.2 we
encountered the problem of determining how many and which parameters are needed
in a regression model. We addressed the problem with k-fold cross-validation and
bootstrap resampling. Now we will look at how the Bayesian framework can be used
to address this problem.

Let’s say there are competing models that describe the data, but these models do
not just differ from each other by having different values for their parameters. The
models might have completely different parameters or one model might be the same
as the other except that it has additional parameters. Which model is more strongly
supported by the data? Is it justified to add the extra parameters? This is called
model selection.

Let us consider a set of all possible models that explain the data M1,M2, .... We
can write down the posterior for model Mi using Bayes’ theorem as in the parameter
estimation case

P (Mi|DDD) =
P (DDD|Mi)P (Mi)

P (DDD)
=

P (DDD|Mi)P (Mi)∑
i P (DDD|Mi)P (Mi)

. (10.0.1)

It is difficult to imagine ever knowing all possible models so model selection is usually
restricted to comparing the relative probability of two models, call them M1 and M2,
by taking the ratio of their posteriors

O1,2 =
P (M1|DDD)

P (M2|DDD)
=
P (DDD|M1)

P (DDD|M2)

P (M1)

P (M2)
= B1,2

P (M1)

P (M2)
. (10.0.2)

O1,2 is called the odds of model 1 relative to model 2 and B1,2, the ratio of the model
likelihoods, is know as Bayes’s factor. If the prior probabilities are equal, as they
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often are, then the odds is equal to Bayes’ factor. Note that P (DDD) cancels out so
we avoid needing to know the probability of the data over all possible models. If the
odds is large then model 1 is favored. If it is small then model 2 is favored. You can
also take the log of the odds and then positive values would favor M1 and negative,
M2.

How can we calculate P (DDD|M)? In the parameter estimation problem, we stayed
within one model, or you could call it a family of models if each set of parameters
counts as a different model. Because of this, all the probabilities were conditional on
this model being true although that was not explicitly shown. We can write Bayes’
theorem again with the model conditionality explicitly shown

P (θθθ|DDD,M) =
P (DDD|θθθ,M)P (θθθ|M)

P (DDD|M)
. (10.0.3)

We can now see that P (DDD|M) in the odds (10.0.2) is actually the evidence for each
model,

P (DDD|Mi) =

∫ ∞
−∞

dθθθ P (DDD|θθθ,Mi)P (θθθ|Mi) = E(DDD|Mi) (10.0.4)

where the integral is over all of the parameter space within model Mi. Bayes’ factor
is the ratio of evidences for two models.

The situation often arises where one has a standard model that explains the data
and an extension to the model that includes some additional parameters. We will
call these nested models. For example, the standard ΛCDM cosmological model
and ΛCDM plus dark energy with an equation of state parameter that is not -1
(w ≡ p/ρ 6= −1) as it would be for a cosmological constant. Or the dark energy
might be coupled to dark matter and there is a parameter describing the strength
of this coupling. Or you have stellar evolution models that predict the amount of
lithium in a low-mass star among other things. The standard model has no mixing
in the atmosphere and the extended model has mixing regulated with an additional
parameter.

For nested models, the extended model will always have a set of parameter values
that fit the data as well as or better than the standard model since the standard model
is the extended model with additional degrees of freedom to fit the data. Usually, the
standard model is identical to the extended model with the additional parameters
fixed to some value (perhaps 0 or in the dark energy case w = −1). Let’s label the
likelihoods Lst(θθθ|DDD) for the standard model and Lex(θθθ, β|DDD) for the extended model
where β is the extra parameter. Let’s denote the parameter values that maximize
the standard model likelihood as θ̂θθst and those that maximize the extended model
likelihood as (θ̂θθex, β̂). Then

Lex(θ̂θθex, β̂) ≥ Lst(θ̂θθst). (10.0.5)
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Because of this one might be drawn to the conclusion that more complicated models
are always as good as or better than less complicated ones. But, as discussed in
section 7.2, the model might be overfit. This can also be said to violate Occam’s
principle, or razor, that the best model is the simplest one that is consistent with the
observations (William of Ackham ∼ 1300).

For a more concrete example, you can always fit a line to two data points perfectly.
If you add another data point the line generally won’t go through all the points. You
could add a parameter and fit a quadratic function and it would again go through all
of the points. If you have n data points you can fit them perfectly with a nth order
polynomial (as long as they all have different independent variable values). But if
your model includes random noise in the data you would not expect the correct model
to go through all the points. ”Any theory that fits all the data is wrong because some
of the data is wrong.” So when do you stop adding parameters? When does the model
fit too well?

Although it is not immediately apparent, Bayesian model selection automatically
incorporates a version of Occam’s razor, but it is not in the form that one might
expect. To demonstrate this let’s consider an extended model with an extra param-
eters βββ. The prior on this parameter will be π(βββ). The standard model will be
the extended one with βββ = βββo. We will take the priors on the models to be equal
(P (M1) = P (M2)). Bayes’ factor between the models is

B2,1 =

∫
dθθθ
∫
dβ L(DDD|θθθ,βββ)π(θθθ,βββ)∫
dθθθ L(DDD|θθθ,βββo)π(θθθ)

=
〈L(DDD|θθθ,βββ)〉πθθθ,βββ
〈L(DDD|θθθ,βββo)〉

π
θθθ

(10.0.6)

where 〈. . .〉πθθθ denotes the average or expectation with respect to the prior on param-
eters θθθ. This shows us that for the extended model to be favored the average of the
likelihood in the extended parameter space must be larger than its average in the
standard parameter space. The extended space is larger and thus even if the maxi-
mum of the likelihood in this space is larger, it does not follow that the average will
be larger.

To understand this a little better let’s define the volume to which the likelihood
alone constrains the parameters as

VLθθθ ≡
1

L(DDD|θ̂θθ)

∫
dθθθ L(DDD|θθθ). (10.0.7)

Likewise, we can define the volume to which the prior by itself constrains the pa-
rameters as Vπθθθ . In the case of a uniform prior π(θθθ) = 1/Vπθθθ . Now if the prior is
approximately constant within the likelihood volume, as is the case when the prior
is uniform and the likelihood is small at the boundaries of the prior, we can take the
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prior out of the integrals in (10.0.6) and express Bayes’ factor as

B2,1 =

[
VLθθθ,βββ/Vπθθθ,βββ

]
[VLθθθ /Vπθθθ ]

L(DDD|θ̂θθext, β̂ββext)
L(DDD|θ̂θθst,βββo)

(10.0.8)

The ratios of maximum likelihoods on the left will favor model 2 or be at least neutral,
equal to 1. The factor in front shows that an extended model that expands the
likelihood volume compared to the prior volume will be favored. Counterintuitively,
an extended model whose likelihood constrains the parameters to a small region,
even if that region is far away from the original best-fit region at (θ̂θθst,βββo), will be
more favored than one that is less constraining. This is essentially because the prior
defines our expectations for what range of values the new parameter should have and
the extended model is penalized for contradicting that by restricting the range. The
extended model must not only provide an island in parameters space where the fit is
better. Its total statistical weight, integrated over parameters space must be larger.

In 10.0.8, the ratio of the volumes in square brackets, or something like it, is
sometimes called Occam’s factor. It can be interpreted as a measure of the width in
parameter space of the posterior in the β dimension in the extended model compared
to the width allowed by the prior. For the odds to favor the extended model the fit
must not just be better, but so much better that it overpowers Occam’s factor to
make the odds greater than 1. In other words, if model M1 unnecessarily restrictive
on parameters β by setting it to βo it is better to use model M2 which allows it to be
free.

Another illustrative extreme case is one where the prior on β is very narrow
compared to its constraint from the likelihood. This could be the case if a previous
experiment already constrained β much more strongly than the one we are considering
here or it could be that the theory behind the model requires that this parameter
be within a range within which it cannot significantly change the predictions for this
data set. In this case

O2,1 = B2,1 =

∫
dθθθ
∫
dβ L(DDD|θθθ, β)π(θθθ)π(β)∫
dθθθ L(DDD|θθθ, βo)π(θθθ)

(10.0.9)

'
∫
dθθθ L(DDD|θθθ, βo)π(θθθ)

∫
dβ π(β)∫

dθθθ L(DDD|θθθ, βo)π(θθθ)
(10.0.10)

'
∫
dθθθ L(DDD|θθθ, βo)π(θθθ)∫
dθθθ L(DDD|θθθ, βo)π(θθθ)

(10.0.11)

' 1 (10.0.12)

So if the extended model has a parameter that doesn’t improve the fit to the data
within its prior allowed range then this extended model will not be favored or disfa-
vored over the simpler model. For this reason, saying that Bayesian model selection
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accounts for Occam’s razor is misleading. Occam’s principle is that a simpler model
should be favored, but here we see that a model with extra superfluous, irrelevant
parameters is not disfavored. This is what we want, however. We can always add
extra irrelevant parameters to a model that have no effect on its predictions. These
models are identical in terms of their physical predictions so the data should not favor
one over the other even if philosophers do.

It could be that a previous experiment justified the use of M2 and thus by necessity
constrained β. If this constraint is included in the prior for the current experiment
which provides no further information about β the odds between these models will
be one. The current experiment adds no more weight to our preference for model M2

and detracts none. Note that it does not follow that the current experiment would
not favor M2 if a different prior were used.

One criticism of Bayesian model selection is that it depends on having a well-
justified prior distribution for the parameters. Normalization or boundaries of allowed
parameter space are important whereas in the parameter estimation case, normaliza-
tion of the prior cancels out and the boundaries are only important if the likelihood is
significant there. For this reason, you can use a uniform or Jeffreys prior, for example,
that extends to infinity. If you use an infinite uniform prior for a new parameter in
the model selection problem you will always get an infinitely small odds! If you start
from a state of ignorance what prior do you use? If you extend the prior to just some
big number then the odds will depend on this sometimes arbitrary choice. For me,
this is a big ambiguity in applying Bayesian model selection to practical problems
unless there is a well-justified prior coming from theory (like in the case 0 < Ω < 1)
or from a previous experiment.

Consider the following situation. The prior is uniform within a hypercube and
the likelihood constrains the parameters completely so that it is effectively zero on all
the boundaries of the hypercube and outside of it. The extended model adds another
dimension to the hypercube for which the same is true. Now we calculate Bayes’
factor between the models and decide if the extended model is justified. We then
decided that we were too conservative and extended the range of the new parameter’s
prior to be twice as large. Nothing has changed about the data, the posteriors, or the
likelihoods, but Bayes’ factor will be half of what it was before. The parameters have
zero probability of being in this new volume, but yet its existence should change our
judgment about the relative merits of these two models? I find this to be a problem
that makes Bayesian model selection unsatisfactory.

We will find later that frequentist hypothesis testing offers an alternative to model
selection that is more satisfying in many ways. There is also a method called posterior
predictive p-values which combines some of the advantages of both methods. We will
learn about this method in section 10.3.
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10.1 Linear Guassian models

The case of a linear model with a Gaussian likelihood is particularly instructive and
has a clear connection to χ2 hypothesis testing discussed previously. As we saw in
chapter 8.3, we can write the likelihood as

L(xxx|θθθ) =
1

(2π)n/2
√
|CCC|

exp

[
−1

2
(xxx−MMMθθθ)T CCC−1 (xxx−MMMθθθ)

]
(10.1.1)

=
1

(2π)n/2
√
|CCC|

exp

[
−1

2

(
xxx−MMMθ̂θθ

)T
CCC−1

(
xxx−MMMθ̂θθ

)]
(10.1.2)

× exp

[
−1

2
(θθθ − θ̂θθ)TMMMTCCC−1MMM(θθθ − θ̂θθ)

]
(10.1.3)

=
1

(2π)n/2
√
|CCC|

e−
1
2
χ2
min e−

1
2
χ2(θθθ) (10.1.4)

where these two χ2s are defined here. To find the evidence we integrate over the
parameters.

E(xxx) =

∫
dθθθ L(xxx|θθθ)π(θθθ) (10.1.5)

=
1

Vθ

∫
dθθθ L(xxx|θθθ) (10.1.6)

=
(2π)p/2|MMMTCCC−1MMM |−1/2

(2π)n/2
√
|CCC|Vθ

e−
1
2
χ2
min (10.1.7)

where in line (10.1.6) it was assumed that the prior, π(θθθ), is uniform and the likelihood
is small at the boundaries of allowed parameter space. The volume of parameter space
is Vθ and p is the number of parameters.

The parameters of model 1 will be θθθ and for model 2, βββ. Bayes’ factor is then

B21 ≡
E2(xxx)

E1(xxx)
=

[
Vθ
Vβ

] [
(2π)(p2−p1) |MMMT

1CCC
−1MMM1|

|MMMT
2CCC
−1MMM2|

]1/2

e
1
2

∆χ2
min (10.1.8)

where ∆χ2
min = χ2

min,1 − χ2
min,2. This lends itself to the following interpretation. The

first factor is the ratio of volumes in parameter space. If model 1 is nested in model 2
with one additional parameter, as considered before, then this is one over the range of
parameter β. The second factor is the ratio of likelihood volumes for the two models
in parameter space and the last factor is the ratio of the maximum likelihoods. Recall
that |AAA−1| = |AAA|−1.
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Figure 10.1: Simulated point source and point source convolved with psf. The source
added to Gaussian uncorrelated noise.
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10.1.1 Example: Object detection

Let us consider the case of an image made up of pixels. The noise in each pixel is
independent with the same variance. We suspect there is an object at pixel j. The
rest of the image is noise. There is a psf or blurring such that wij of the flux from
position j goes into pixel i. There is also a uniform background.

Model 1 has no source at position j and model 2 has a source there. Model 1 has
the parameter b for the background and model 2 has the additional parameter fj for
the flux from the source. The MMM matrices are

MMM1 =

 1
1
...

 = 111 MMM2 =


1 0
...

...
1 wij
1 w(i+1)j
...

...

 = (111 www) (10.1.9)

Noise’s covariance will be C = σ2III so,

MMMT
2CCC
−1MMM2 =

n

σ2
MMMT

2CCC
−1MMM2 =

1

σ2

(
n

∑
iwij∑

iwij
∑

iw
2
ij

)
. (10.1.10)

The psf will be normalized so that Σiwij = 1, otherwise it would leak flux. We will
ignore leakage off the edge of the image. The maximum likelihood solution, equation
(6.1.9), is(

b̂

f̂j

)
=
(
MMMTCCC−1MMM

)−1
MMMTCCC−1ddd =

1

n
∑

iw
2
ij − 1

( ∑
j dj
∑
w2
ij −

∑
i diwij

n
∑

i diwij −
∑

i di

)
.

(10.1.11)

The posteriors are given by (6.1.11) with (10.1.10).
According to (10.1.8) Bayes’ factor between these two models is

B21 ≡
E2(xxx)

E1(xxx)
=

[
1

∆fj

] [
2πnσ2

n
∑

iw
2
ij − 1

]1/2

e
1
2

∆χ2
min . (10.1.12)

This does not take into account the requirement that fj must be positive which could
be taken care of by changing the range of the fj integral in () to 0 to ∞ instead of
−∞ to ∞. But considering (10.1.12) we can see the general behavior that Bayes’
factor is dependent on the allowed range for the fj, ∆fj. If we increase this range
the evidence for there being a source goes down which doesn’t seem desirable.

Another illustrative case is this. Let us compare the models where there is no
source to one where there is a source, but in this case, the background, b, is known
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Figure 10.2: Posterior for the combination of parameters f and b. The contours
contain 68%, 95% and 99% of the probability.

Figure 10.3: Marginalized posterior for parameter f . The dotted curve is the value
used to generate the data.
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from some previous calibration and has been subtracted. Model 1 has no free pa-
rameters and model 2 has one, fj. The maximum likelihood solution for model 2
is

f̂j =

∑
iwijdi∑
iw

2
ij

(10.1.13)

The evidences are

E1(fj) =
e−

∑
i d

2
i

2σ2

(2π)n/2σn
E2(fj) =

e−
∑
i(di−wij f̂j)2

2σ2

(2π)n/2σn

∫ ∞
0

dfj e
−

∑
i w

2
ij

2σ2 (fj−f̂j)2

π(fj) (10.1.14)

and Bayes’ factor is

B21 =
E2(fj)

E1(fj)
= e

1
2

∆χ2
min

∫ ∞
0

dfj e
−

∑
i w

2
ij

2σ2 (fj−f̂j)2

π(fj) (10.1.15)

∆χ2
min =

∑
i d

2
i

σ2
−
∑

i(di − wij f̂j)2

σ2
. (10.1.16)

If we use a uniform prior up to fmax this becomes

B21 =
σ

fmax

√
π

2
∑

iw
2
ij

erf

√∑iw
2
ij

2σ2
(fmax − f̂j)

+ erf

√∑iw
2
ij

2σ2
f̂j

 e 1
2

∆χ2
min

(10.1.17)

=
σ

fmax

√
π

2
∑

iw
2
ij

1 + erf

√∑iw
2
ij

2σ2
f̂j

 e 1
2

∆χ2
min . fmax � f̂j

(10.1.18)

The ∆χ2
min factor will increase exponentially as the best-fit flux, f̂j, gets larger,

lending more support for model 2 and thus a detection. Not that the part in brackets
would go down if f̂j � fmax which might seem strange. This is because the prior
expectations are that a source should be no brighter than fmax so having a source
brighter than this needs to be explained by a very unusually large contribution from
the noise. However, the ∆χ2

min factor will overpower it and increase B21 for very
bright sources. This source might be unlikely in model 2, but it is even more unlikely
in model 1.

Not liking the arbitrariness of fmax, you might consider not using a uniform prior
on fi, but instead the expected luminosity function of sources as a prior. This might
lead to some counterintuitive results. If a significant amount of the luminosity func-
tion is at fi

<∼ σ (as it almost always is for a power-law) then you would not expect
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Figure 10.4: Bayes’ factor for a source for each pixel of the image.
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to detect a high proportion of the sources, but because, according to this prior, you
expect most sources to produce no significant increase in the signal, Bayes’ ratio
would favor detection even when the data does not! This is because you are essen-
tially testing whether a source that meets your prior expectations is present, but you
expect that the source is unlikely to contribute to the data above noise levels. To see
an easy illustration of this replace the prior with a Dirac delta function in (10.1.15),
π(fi) = δ(fi). You will find that B21 ≥ 1, but it will also be true that increasing f̂j
will increase B21.

It is clear that if ∆χ2
min is large, model 2 should be favored. Bayesian model

selection attempts to tell us precisely how big ∆χ2
min needs to be for the model to be

accepted, but its answer is very strongly dependent on the prior distribution assigned
to any new parameters. For me, the ambiguity as to a clear criterion for selecting a
model and the dependence on the prior distribution even in regions of parameter space
that are ruled out by the data makes Bayesian model selection inherently suspect.
We saw in chapter 8 that the frequented hypothesis has a different answer to this
question which might be more satisfactory but is less widely applicable.

10.2 Ignore the prior & Bayesian Information Cri-

terion (BIC)

A common alternative for model selection is to make the following ”approximation”.
If we assume that the constraints on the parameters from the likelihood are much
stronger than the constraint from the priors we can make the approximation

B2,1 =

∫
dθθθ
∫
dβ L(DDD|θθθ, β)π(θθθ, β)∫
dθθθ L(DDD|θθθ, βo)π(θθθ)

' π(θ̂θθext, β̂ext)

π(θ̂θθst)

∫
dθθθdβββ L(DDD|θθθ,βββ)∫
dθθθ L(DDD|θθθ, βo)

(10.2.1)

and then the ratio of priors is simply dropped,

B2,1 ∼
∫
dθθθdβββ L(DDD|θθθ,βββ)∫
dθθθ L(DDD|θθθ, βo)

. (10.2.2)

This does not make sense to me within the Bayesian framework. In the Bayesian
context you can never integrate over the parameters without the prior because the
prior defines the density of probability in the parameter space, it provides a metric
on this space. However, outside of the Bayesian interpretation, the criterion might be
justified in specific cases by simply showing that it works in simulations or analytically.
This assumption is used to justify the BIC (Bayesian Information Criterion).
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The BIC is an approximation that is sometimes used to make model selection
much simpler. Consider the probability of the data given a model (eq. 10.0.4) again

P (DDD|Mi) =

∫ ∞
−∞

dθθθ L(DDD|θθθ,Mi)π(θθθ|Mi) (10.2.3)

=

∫ ∞
−∞

dθθθ elnL(DDD|θθθ,Mi)π(θθθ|Mi) (10.2.4)

For clarity, let’s suppress the dependents on the data and write L(θθθ,Mi). Now let’s
expand the the log-likelihood around the maximum likelihood parameters for this
model

lnL(θθθ,Mi) ' lnL(θ̂θθ,Mi) +
1

2
(θi − θ̂i)

[
∂2 lnL
∂θi∂θj

]
θθθ=θ̂θθ

(θj − θ̂j) + . . . (10.2.5)

There is no linear term because we are expanding around the maximum likelihood.
The matrix

Iij ≡ −
[
∂2 lnL
∂θi∂θj

]
θθθ=θ̂θθ

(10.2.6)

is sometimes called the information or observed Fisher information.1 If there are n
data points we can define Īij = Iij/n as the information per data point.

If we ignore higher order terms and we assume the prior π(θθθ|Mi) is constant over
the range of θθθ where the likelihood is significant – i.e. the data constrains the model
without any help from the prior – then we can approximate the integral

P (DDD|Mi) ' π(θ̂θθ|Mi)L(θ̂θθ,Mi)
(2π)k/2√
nk|Ī|

(10.2.7)

where k is the number of parameters. In the limit of a large amount of data (compared
to the number of parameters) we can ignore |Ī| as it will be a factor of order 1 that

will not change greatly between models. Likewise, we assume that the prior π(θ̂θθ|Mi)
does not favor any particular parameter set. The Bayesian Information Criterion
(BIC) (Schwartz, 1978) for model Mi is defined as

BICi ≡ k lnn− 2 ln
[
L(θ̂θθ,Mi)

]
(10.2.8)

so that

P (Mi|DDD) ∝ P (DDD|Mi)P (Mi) ∝ e−BIC/2P (Mi). (10.2.9)

1This is not the true Fisher information that will be discussed later because it is not averaged.
It also should not be confused with Shannon’s information.
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The model with the smallest BIC is considered the best fit. You can see from its
definition that more complex models are penalized by the k lnn term. This is the
Occum’s Razer penalty function. If the BIC of two models differ by less than 2 there
is considered to be no real reason to favor either one. If |∆BIC| = 2-6 then there
is some reason, 6 -10 is strong evidence and > 10 is considered very strong evidence
that one is better than the other.

There are other criteria used for the same purpose that differ from the BIC in that
their penalty function is different and they are justified in different ways. For example,
the Akaike information criterion (AIC) isAIC ≡ 2k−2 lnL(θ̂θθ,Mi) (Akaike, 1974).
The justification for the AIC is based on minimizing the relative entropy between the
data and the competing models in the large data limit. Unlike the BIC, the AIC is
not a consistent statistic, i.e. in the limit of infinite data, there is a finite probability
that the model with the lowest AIC will not be the correct one.

The interested reader might also look up the Wald test and the Lagrangian
multiplier or score test for model selection problems which also depend on taking
the large data limit to evaluate their significance, except in special cases.

Remember that we have made some approximations that might make the BIC
invalid. In particular, if the number of independent data points compared to the
number of parameters is not large the BIC will not be accurate. Also, the BIC com-
pletely ignores the prior-volume for the parameters that we saw makes Bayesian model
selection problematic. As a result, the Bayesian Information criterion is not strictly
speaking Bayesian. Also, parameter degeneracies and unconstrained parameters will
make |Ī| = 0 so k must be the number of non-degenerate, constrained parameters.

Problem 48. Find the BIC for n independent identically normally distributed
data points. The parameters are the mean and the variance.

Problem 49. Say we have records of the temperature in two cities in August
that goes back centuries. Consider a model where the temperatures in both cities are
normally distributed with the same mean and variance. Now consider an alternative
model where the mean and variance for the two cities are different. What criterion
would the BIC give for favoring one of these models over the other?

10.3 Bayesian model checking

To perform Bayesian model selection as discussed you need the evidence. You can
hope to calculate the evidence analytically or numerically (see chapter 13) but, as we
have seen, model selection by hypothesis testing has some real advantages, it is global
and it is not sensitive to the prior. The parametric bootstrap method discussed in
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section 8.10 has some advantages, but its validity depends on asymptotic theorems
which might not apply.

Hypothesis testing and model selection can be done using a very general hybrid
method called posterior predictive p-values (PPP) (Protassov et al., 2002). The
strategy is to use Bayesian prediction (section 6.6) based on the observed data to
generate mock data sets that can be used to calculate the cumulative distribution
of a goodness-of-fit statistic. The model is deemed inconsistent with the data if this
predictive p-value is small. This is a kind of internal consistency check.

Let’s look at the distribution of possible data for a given model. Using the product
rule

p(xxx) =

∫
dθθθ p(θθθ)p(xxx|θθθ). (10.3.1)

For the probability of the parameters, p(θθθ), we can use the posterior given the observed
data, ddd,

p(xxx) =

∫
dθθθ p(θθθ|ddd)p(xxx|θθθ). (10.3.2)

For any statistic T (xxx) we can use this to calculate its distribution

p(T ) =

∫
dθθθ p(θθθ|ddd)p (T |θθθ) (10.3.3)

or its cumulative distribution

F (T ) = p(< T ) =

∫ T ′

−∞
dT ′

∫
dθθθ p(θθθ|ddd)p (T ′|θθθ) (10.3.4)

=

∫
dθθθ p(θθθ|ddd)p (< T |θθθ) (10.3.5)

=

∫
dθθθ p(θθθ|ddd)

∫
V (<T )

dxxx p (xxx|θθθ) (10.3.6)

where V (< T ) is the region in data-space where T (xxx) < T . We can further write

p (< T |θθθ) =

∫
dxxx Θ (T > T (xxx)) p (xxx|θθθ) (10.3.7)

' 1

N

N∑
i=1

Θ (T > T (xxxi)) xxxi ∼ p (xxx|θθθ) (10.3.8)

where the law of large numbers was used in the last line. The cumulative probability
(10.3.6) can then be used to calculate the p-values. If the p-value is small, the observed
data set is unlikely and the model can be rejected.



188 CHAPTER 10. BAYESIAN MODEL SELECTION & MODEL CHECKING

Unlike Bayesian inference, this can be used for global model checking or goodness-
of-fit. The prior distribution does enter into it through the posterior, but as the
amount of data increases it becomes independent of the prior which is a great ad-
vantage over using evidence ratios to do model selection. How powerful this test is
depends on what statistic, T (xxx), is used, as it is for traditional hypothesis testing.
You are free to choose any statistic that you think will be sensitive to inconsistencies
between the model and the data.

In simple cases equation (10.3.6) can be calculated analytically, but in many cases,
it cannot. It can be approximated however with the following steps

1. Generate parameters set θθθi, i = 1 . . . N taken from the posterior p(θθθ|ddd) using
converged MCMC (chapter 13) or another technique.

2. For each parameter set θθθi generate a data set xi taken from the likelihood
p(xxx|θθθi). This is often a Gaussian, Poisson, or another classical distribution that
can be easily sampled from.

3. Calculate the statistic Ti = T (xxxi) for all the xi’s

4. Create the empirical cumulative distribution for the Ti’s to evaluate the p-value.
In other words, the estimated for the right-sided, single-tail p-value is

p =
1

N

N∑
i

Θ (Ti > T (ddd)) (10.3.9)

Problem 50. Show that for the case of normally distributed data, a linear model
and T = χ2

min(xxx), as defined in section 8.3, this is the same global goodness-of-fit test
as discussed there.



Chapter 11

categorical variables

So far we have dealt primarily with continuous variables. There are many important
cases where the variable of interest is categorical, it takes on discrete values. These
problems come up with sorting objects into classes and in trying to determine if being
in a particular class is related to having a particular characteristic or not.

11.1 Contingency tables

Contingency tables are a way of examining the distributions of categorical vari-
ables, variables that can take one of a finite number of values. For example, dead
or alive, class I or class II radio source, color of a car, etc. A typical null hypothe-
sis might be, ”Taking a particular medication does not change the risk of cancer?”,
”Smoking does not increase the chance of suicide” or ”Elliptical galaxies are just as
likely to have AGN as spiral galaxies?”. A contingency table might look something
like table 11.1. Usually, one is not interested in the distribution of one of the vari-
ables. We are not interested in the distribution of star types for example only if the
star type is related to whether it has a planet. In medical testing, we would not be
investigating how many people took the medication in so far as this is chosen by the
researchers and not an outcome of the trials. A contingency table might also be used
to test how well a test works. For example, a detection test or a medical test for a
disease in which case the columns might be ”has the disease” and ”doesn’t have the
disease” and the rows might be ”tested positive” and ”tested negative”.

Precisely how the significance of the contingency table is evaluated depends on
how the experiment was designed and what null hypothesis is tested. Let us consider
a generic 2x2 contingency table given in table 11.2.

In analyzing a contingency table the assumption is that the observations fall
into the different combinations of characteristics randomly, but that the probabil-

189



190 CHAPTER 11. CATEGORICAL VARIABLES

star type planets no planets total
F 10 134 144
G 15 97 112
K 2 30 32

27 261 288

Table 11.1: Contingency table of completely made up data.

type I type II row totals
category A a b r1 = a+ b
category B c d r2 = c+ d

column totals c1 = a+ c c2 = b+ d n = a+ b+ c+ b

Table 11.2: 2x2 Contingency table.

ities might not be equal. The total number of observations is fixed. In general, we
can assign probabilities to each combination of characteristics, pa, pb, pc and pd. Since
all these must add up to one we can eliminate one of them. Let it be pd. The correct
distribution is the multinomial. For the 2x2 case this is

P (a, b, c|pa, pb, pc, n) =
n!

a!b!c!(n− a− b− c)!
(pa)

a(pb)
b(pc)

c(1− pa − pb − pc)n−a−b−c

(11.1.1)

where the p’s are the probability for each case. There are three independent mea-
surements since the sum of the observations is fixed at n.

One might encounter a problem where you want to determine all probabilities,
but there is usually some relationship between the probabilities one wishes to test.
The most common question is ”Is the probability of being of type I dependent on
the category or not?” This situation is the case for Fisher’s exact test 1 which
provides a clear hypothesis test for the equality of the distributions between columns.
It is sometimes said that in this case the trials are continued until a predetermined
number of outcomes are found. We keep searching for planets until we have found
10, for example. But in practice, I think it is better stated that in this case, the
probability is contingent on both the number of instances in each row (r1 . . . ) and the
number in each column (c1 . . . ). With these constraints, there is only one independent
measurement for the 2x2 case which can be taken to be a. The probability for the case
where the columns are equally likely, the usual null hypothesis, is the hypergeometric

1Supposedly it was first used to test biologist Muriel Bristol’s claim to be able to taste whether
milk had been added to her cup before or after the tea. I don’t know what the conclusion was.
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distribution .

P (a|c1, r1, r2, n) =

(
r1
a

)(
r2
c

)(
n
c1

) =

(
r1
a

)(
r2
c1−a

)(
n
c1

) (11.1.2)

a itself can be used as the goodness-of-fit statistic and this distribution used to eval-
uate its significance. You might remember that this is the probability of drawing a
”balls” of type I in r1 draws from a bag of n balls that has c1 balls of type I and c2

balls of type II, without replacement. You can see how this applies in this case.
Barnard’s test and Boschloos’s test are exact tests used to analyze contingency

tables that are more powerful than Fisher’s but require more computational work.
These tests are available in statistical software packages. They work by explicitly
finding all the possible tables, subject to the constraints, that fit the null hypothesis
less well than the observed one.

When the number of rows and columns becomes larger it becomes harder to for-
mulate a hypothesis test. When the numbers are large ( >∼ 10 in each bin) there is an
alternative. The problem is very similar to the binned χ2 test discussed in section 9.2.2
only in this case each of the rows are independent samples from a multinomial dis-
tribution and the null hypothesis is that each row has the same distribution. Let’s
generalize to an arbitrary number of rows and columns. The probability of getting
njk events in the j-th row k-th column is

P =
r∏
j=1

Pmultinom(nj1, . . . , njc|rj, {p1, . . . , pc}) (11.1.3)

The null hypothesis requires that the probabilities pk depend only on the columns.
rj is the total number of events in row j.

Following the same logic as in section 9.2.2 we can arrive at χ2-like statistic

X2 =
r∑
j=1

c∑
k=1

(njk − rjpk)2

rjpk
(11.1.4)

rjpk is the expected number of events in row j column k given the null hypothesis.
We don’t know the best-fit probabilities pk a priori, but if there are a large number
of events we can estimate them with

pk '
∑r

j=1 njk

n
=
ck
n

(11.1.5)

where n is the total number of events and ck is the total number of events in the k-th
column. Putting these estimates into the X2 statistic gives

X2 =
r∑
j=1

c∑
k=1

(njk − rjck/n)2

rjck/n
(11.1.6)
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This is the traditional statistic for contingency tables when the sample is sufficiently
large.

There are r constraints for the row sums and c constraints for the column sums,
but both of these sets must add up to the same number so in total there are r+ s− 1
constraints. There are c r entries in a table so the number of degrees of freedom is
cr − (r + s − 1) = (r − 1)(c − 1). So the above statistic is χ2

(r−1)(c−1) distributed in
the limit of many observations.

If it has been determined that the rows are consistent with being distributed in
the same way one might want to know what the probability of being type I is. Going
back to the multinomial distribution, each row is an independent sample so pa+pb = 1
and pc + pd = 1. The probability can the written

P (a, c|r1, r2, pa, pc, n) =

(
r1

a

)(
r2

c

)
(pa)

a(1− pa)r1−a(pc)c(1− pc)r2−c (11.1.7)

If the probabilities are the same for the rows, pa = pc = p in which case

P (a, c|r1, r2, p, n) =

(
r1

a

)(
r2

c

)
pc1(1− p)n−c1 (11.1.8)

=

(
n

c1

)
pc1(1− p)n−c1 (11.1.9)

We now have one unknown parameter, p, the probability of being of type I, and one
independent measurement, c1. The hypothesis that type I has the probability p can
be done using c1 as a statistic and this distribution to evaluate its significance. You
could also use this likelihood to calculate the posterior for p.

If the hypothesis that each row is distributed identically is rejected one might
want to constrain the parameters pa and pc. In this case, the rows are completely
separate so separate hypothesis tests or posteriors should be calculated for each row.

Problem 51. Calculate X2 for the contingency table 11.2. Is there evidence for
the existence of planets being dependent on the type of star?

11.2 logistic regression or classification

Regression with a categorical dependent or target variable is called logistic regression.
The goal is to build a model that takes some continuous or categorical independent
(or feature) variables and predicts which class the object or event is in. The model is
trained or fit using data where the independent (or target) variable or variables are
known. In machine learning language this would be a supervised learning problem.
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An astronomical example is trying to sort objects into stars, galaxies, and quasars
based on their photometry and/or images.

Let’s say we are interested in predicting some outcome Y that can be true or false
(win or lose, pass or doesn’t pass, live or die). The probability of Y being true might
be dependent on some independent variable or variables X. We wish to be able to
predict the probability of Y given an X.

Each trial has a different probability of being correct, pi, depending on the variable
xxxi. For the two possibilities yi = 0 or 1 the likelihood is binomial

L({yi}) =
n∏
i=0

pyii (1− pi)1−yi (11.2.1)

The idea behind logistic regression is to make a model for the pi’s that depends on
the xxxi’s and some parameters θθθ. The best-fit parameters can be found by maximizing
the likelihood. In this way, instead of making a hard boundary in ”feature space”,
xxx, on one side of which we predict y = 1 and on the other y = 0 we instead predict
the odds of y at some point xxx. This allows for the possibility that different outcomes
y could occur at the same xxx. If y is dependent on xxx we would expect that in some
region of xxx-space the outcome will be close to certain, y ∼ 1 or y ∼ 0, and in other
regions no definitive determination can be made, y ∼ 1/2.

The most popular model is a linear one for the log of the odds pi/(1− pi)

ln

(
pi

1− pi

)
= θo +

∑
j

θjxj (11.2.2)

The free parameters are the θj’s. The sum is over all the independent variables. The
odds implies that the probability is in the form of a sigmoid function, S(u),

S(u) =
1

1 + e−u
=

eu

1 + eu
(11.2.3)

S(u) is 1 for large u and 0 for large −u. The probability that the ith data point will
be true is given by

pi = S

(
θo +

∑
j

θjxj

)
(11.2.4)

This is one example of an activation function.
This is plugged into the likelihood (11.2.1) for the training set. The maximum

likelihood solution for θθθ must be found by numerical means (usually Newton-Raphson
or some variant) because no analytic solution exists.
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11.2.1 multinomial logistic regression

What if there are more than 2 classes? Let’s say there are K classes. The probability
of being in class i is modeled as

pi(xxx) =
1

1 +
∑

k 6=p e
θθθk·xxx ×

{
eθθθ
i·xxx , i 6= p

1 , i = p
(11.2.5)

where k = p is the ”pivot class”. You can see that this model for the probabilities is
normalized by construction. There are now (K − 1)×Nf coefficients θθθk where Nf is
the number of features. This function called a softmax function, will ideally be close
to one for one of the classes and close to zero for the others if the model is working
well.

There are several strategies for finding the coefficients. One is simply to maximize
the multinomial likelihood with respect to these coefficients by numerical means.
Another is to find the coefficients θθθk by doing a binomial logistic fit between class k
and the pivot class p. This is repeated for all K − 1 classes besides p.

The probability of an observed case being in class i is pi so the likelihood for
a single case is just pi. The pi’s will be different in each case depending on the
independent variable, or features, in each case, pi(xxxj). The total likelihood will be
the product of the probabilities for each case

L =
N∏
j=0

pij(xxxj|θθθi) (11.2.6)

where ij is the class that case j is found to be in. This can also be written

L =
N∏
j=0

K∏
i=0

pi(xxxj|θθθi)t
j
i (11.2.7)

where tji is one when i is the class of the jth case and zero otherwise. This way of
representing the classification with an array of length K where all entries are zero
except the true one is called one hot encoding.

cross-entropy loss

In machine learning and software made for it, maximizing the likelihood (11.2.7) or
(11.2.1) often goes by a different name and is given a different interpretation. If we
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take the log of the likelihood (11.2.7) and multiply by -1 we get

L = − logL =
N∑
j=0

Lj (11.2.8)

= −
N∑
j=0

[
K∑
i=0

tji log pi(xxxj|θθθ)

]
(11.2.9)

The part in the brackets with the negative sign is often called the cross-entropy of
the jth case. Here tji is interpreted as a probability distribution of the data jth data
point, which it isn’t, but you could consider it the bootstrap approximation of the
distribution. Minimizing this entropy is equivalent to maximizing the likelihood.

The interpretation is that the cross-entropy expresses the loss of certainty that
comes from using the classifier rather than the label ti which is taken to be certain.
Remember, ti is 1 for the class that the case falls into and 0 for all other classes. If
the classifier is perfect pi = 1 when ti = 1 and pi = 0 for all other classes. In this case
Lj = − log(1) = 0 which is the smallest it can be: perfect certainty, no information
loss when using the classifier instead of the true values. In the binary case

Lj = − [tj log(pj) + (1− tj) log(1− pj)] =

{
log(pj) tj = 1

log(1− pj) tj = 0
(11.2.10)

We will return to the concept of entropy in chapter 14, but for now, we can accept
that minimizing the cross-entropy is equivalent to maximizing the likelihood.
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Chapter 12

Maximum Likelihood, Fisher
Information, Error Forecasting and
Experimental Design

12.1 The Maximum Likelihood Estimator

One usually would like a specific value for a parameter to represent the outcome
of an experiment. One particular choice, and often the only reasonable one, is the
maximum likelihood estimator or MLE which we will signify by θ̂θθ. It is the parameter
values where the likelihood is maximized

∂L
∂θi

(θ̂θθ) = 0 (12.1.1)

We have already seen that an explicit form for the MLE can be found in the case of
a linear model and Gaussian distributed data with known covariances (section 6.1)

and that it is unbiased (< θ̂θθ >= θθθ). When the model is nonlinear and/or the noise is
to be measured simultaneously the MLE is often found numerically.

For example one of the simplest ways of finding the MLE numerically is as follows.
We start at some point in parameter space θθθo. The Taylor expansion of the log-
likelihood around this point is

lnL(θθθ) = lnL(θθθo) +
∂ lnL(θθθo)

∂θi
(θθθ − θθθo)i +

1

2
(θθθ − θθθo)i

∂2 lnL(θθθo)

∂θi∂θj
(θθθ − θθθo)j + . . .

(12.1.2)

= lnL(θθθo) + (θθθ − θθθo) · ∇∇∇ lnL(θθθo) +
1

2
(θθθ − θθθo)TFFF (θθθo)(θθθ − θθθo) + . . . (12.1.3)

197
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where the curvature or Hessian matrix is

Fij(θθθ) =
∂2 lnL(θθθ)

∂θi∂θj
(12.1.4)

If we take the gradient of the Taylor expansion with respect to θθθ we get

∇∇∇ lnL(θθθ) =∇∇∇ lnL(θθθo) +FFF (θθθo)(θθθ − θθθo). (12.1.5)

We want to find the maximum where ∇∇∇ lnL(θθθ) = 0. This expansion will not be
perfect in general, but we can, in most cases, use it to find the maximum iteratively.
The process is to calculate FFF and ∇∇∇ lnL at the current point and then step to the
next point with

θθθn+1 = θθθn −FFF−1(θθθn)∇∇∇ lnL(θθθn) (12.1.6)

This is repeated until ∇∇∇ lnL(θθθ) = 0 to within some tolerance. This finds the max-
imum quickly in many cases. There are many more sophisticated algorithms for
finding the maximum of a scalar function in n-dimensions and ones that don’t require
calculating the Hessian which can sometimes be difficult. It is also possible that there
are multiple maxima and this will converge on a local maximum and not the global
one. Boundaries to parameter space can also complicate things.

In section 12.6 we will see that the MLE has special properties when the amount
of independent data is large and certain regularity conditions on the likelihood are
met. But first, let us look at some general properties of the likelihood function.

12.2 Fisher information and the minimum vari-

ance limit

Let us derive an important limitation on all estimators. The normalization of the
likelihood is of course ∫

dnxL(xxx|θθθ) = 1 (12.2.1)

Taking the derivative of this with respect to a parameter θi gives∫
dnx

∂

∂θi
L(xxx|θθθ) =

∫
dnxL(xxx|θθθ)∂ lnL

∂θi
(12.2.2)

=

〈
∂ lnL
∂θi

〉
= 0 (12.2.3)
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since 〈. . .〉 =
∫
dnxL(xxx)(. . . ). Differentiating this again gives∫

dnx

(
∂ lnL
∂θi

∂L
∂θj

+
∂2 lnL
∂θi∂θj

L
)

=

∫
dnx

(
∂ lnL
∂θi

∂ lnL
∂θj

L+
∂2 lnL
∂θi∂θj

L
)

= 0 (12.2.4)

In other words

Fij ≡
〈
∂ lnL
∂θi

∂ lnL
∂θj

〉
= −

〈
∂2 lnL
∂θi∂θj

〉
(12.2.5)

where Fij is known as the Fisher information matrix (not to be confused with
the Hessian FFF matrix which is not averaged).

Say we have an estimator for the parameter θi which we will call θ̃i(xxx). Its mean
will be 〈

θ̃i

〉
=

∫
dnx θ̃i(xxx)L(xxx|θθθ) = θi + b(θθθ) (12.2.6)

where b(θθθ) is the bias which could be zero or not. Taking the differential of this with
respect to θi gives ∫

dnx θ̃i(xxx)
∂L
∂θi

= 1 +
∂b

∂θi
(12.2.7)∫

dnx θ̃i(xxx)L∂ lnL
∂θi

= 1 + b′ (12.2.8)〈
θ̃i(xxx)

∂ lnL
∂θi

〉
= 1 + b′ (12.2.9)

It follows from (12.2.3) that〈
(θ̃i(xxx)− θi)

∂ lnL
∂θi

〉
= 1 + b′ (12.2.10)

since the extra term will be zero. This is the covariance between the estimator and
the derivative of the log-likelihood. The Cauchy-Schwarz inequality applies to any
covariance so[〈

(θ̃i(xxx)− θi)
∂ lnL
∂θi

〉]2

≤ V ar[θ̃i]V ar

[
∂ lnL
∂θi

]
= V ar[θ̃i]Fii (12.2.11)

or

V ar[θ̃i] ≥
(1 + b′)2

Fii
(12.2.12)
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If the estimator is unbiased b′ = 0. This is called the Cramér-Rao limit or in-
equality. It puts an absolute bound on the variance of any estimator of a parameter.
An estimator that reaches this bound is called an efficient estimator or EE. It is
the best you can do (at least in terms of the variance) so if you can prove that your
estimator reaches this limit and is unbiased there is no need to look any further for
a better one. Not all problems have an EE. For example, there is no EE for σ of
Gaussian distributed data with zero mean. The efficiency of an estimator is the
ratio of its variance relative to the minimum variance limit.

The Fisher matrix is sometimes called simply the information. It can be inter-
preted as a measure of how much information the data contains about a parameter.
The Cramér-Rao limit is one reason for this interpretation. Note also that Fii is the
average of the curvature or Hessian matrix of the log-likelihood. FFF measures the rate
at which the posterior drops off from its maximum in parameter space on average,
i.e. how pointy the peak is. Note that the Fisher matrix is not a function of any data
set. It is a property of the statistical model.

Directly from its definition, it is easily shown that the Fisher matrix is symmetric
and transforms like a tensor under changes of the parameters from a set θθθ to θθθ′,

F ′ab =
∂θi
∂θ′a
Fij

∂θj
∂θ′b

(12.2.13)

Problem 52. Prove that the sample mean is an efficient estimator of the mean of
N uncorrelated Gaussian variables.

Problem 53. What is the efficiency of the median as an estimate of the mean in
the uncorrelated Gaussian case?

Problem 54. Consider the estimator A = ax = a
N

∑N
i xi for the mean. What is

the value of a that minimizes the variance 〈(A− µ)2〉? What is the efficiency of this
estimator? Does this violate the minimum variance limit?

Problem 55. For n identically normally distributed variables with known mean
show that the variance estimator

S2
n =

1

n

n∑
i

(x− x)2 (12.2.14)

has an efficiency greater than one.
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12.3 Forecasting and the Fisher matrix

In planning experiments and astronomical surveys, it is often necessary to predict
how well particular parameters will be measured. No one would fund a satellite or
particle accelerator without some idea of how well it will measure things of interest.
One way of forecasting these errors that is in wide use in cosmology is to use the
Fisher matrix and the Cramér-Rao limit on the variance. One finds an expression for
the log-likelihood and takes its derivatives. Then one picks fiducial parameter values,
usually the values expected, and then averages using the same likelihood to get the
Fisher matrix. Then the Cramér-Rao limit is used

V ar[θ] = σ2
θ '

1

Fθθ
(12.3.1)

There are several criticisms of this method of forecasting errors. One is that for
different fiducial parameter values the Fisher matrix can be quite different. Another
is that the Cramér-Rao limit is not likely to be reached in practice because there is
no EE and/or there are unaccounted-for systematic errors that dominate when the
statistical errors are small. Still, another is that, as we will see, it does not account
for degeneracies between parameters, although in section 12.4 we will see that there
are approximations that try to take this into account.

12.3.1 Example: Simple Cosmological Supernovae

As a simple example let’s consider a simplified version of the famous type Ia super-
nova (SN) surveys that established that the Universe is accelerating in its expansion
and won Perlmutter, Schmidt, and Riess the Nobel prize in 2011. There exists a
relationship between the width of a type Ia supernova’s light curve, i.e. the length of
time it is bright, and its peak luminosity. For this exercise let’s assume that the SNe
brightnesses have already been corrected using this relationship and that the error in
the corrected magnitudes are Gaussian distributed. (The uncertainty in this relation
is not small enough that this can be assumed, but we will simplify the problem for
now.) We will call the corrected brightnesses bi. The corrected intrinsic peak lumi-
nosity, Lo, is unknown but the same for all SNe. The observed brightness is related
to the intrinsic luminosity through the luminosity distance

DL(z,Ho,Ωm,ΩΛ) =
(1 + z)c

Ho

∫ z

0

dz′
1√

Ωm(1 + z′)3 + 1− Ωm

=
c

Ho

dL(z,Ωm)

(12.3.2)

where z is the SN’s redshift, Ho is the Hubble constant, Ωm is the average density
of the Universe in units of the critical density and ΩΛ is the cosmological constant



202CHAPTER 12. MAXIMUM LIKELIHOOD, FISHER INFORMATION, ERROR FORECASTING AND EXPERIMENTAL DESIGN

in the same units. Here it has been assumed that the Universe is geometrically flat
although this is not necessary. In this case, the density in the cosmological constant
is ΩΛ = 1− Ωm. dL(z,Ho,Ωm) is the luminosity distance in ”Hubble lengths”.

Our goal might be to figure out how many supernovae will be required to measure
ΩΛ to say 10%. This being astronomy the measurements and errors are usually given
in magnitudes. The magnitude of the SN will be

m = Mo + 5 log10(DL(z,Ho,Ωm)) (12.3.3)

= Mo + 5 log 10(Ho/c) + 5 log10(dL(z,Ωm)) (12.3.4)

where Mo is an undetermined constant that includes the intrinsic peak luminosity.
With these assumptions the likelihood is

lnL(mmm,zzz|Ωm,ΩΛ) = −1

2

∑
i

1

σ2
i

(mi −Mo − 5 log 10(Ho/c)− 5 log10 dL(zi,Ωm))2 − 1

2

∑
i

ln(2πσ2
i )

(12.3.5)

= −1

2

∑
i

1

σ2
i

(
mi − M̃o − µ(zi,Ωm)

)2

− 1

2

∑
i

ln(2πσ2
i ) (12.3.6)

Note that because Mo and Ho come into the likelihood only as a product there is
no way data could determine them separately without additional information. They
are degenerate parameters in that they cannot be disentangled from one another.
Sometimes these degeneracies are obvious, as in this case, and sometimes they are
not.

Now let’s find the Fisher matrix

∂

∂Ωm

lnL(mmm,zzz|Ωm) = −
∑
i

1

σ2
i

(
mi − M̃o + µ(zi,Ωm)

) ∂µ(zi)

∂Ωm

(12.3.7)

To find the Fisher matrix you have the choice of taking another derivative or squaring
this. I’ll choose to take another derivative

∂2

∂Ω2
m

lnL(mmm,zzz|Ωm) = −
∑
i

1

σ2
i

[(
∂µ(zi)

∂Ωm

)2

+
(
mi − M̃o − µ(zi,Ωm)

) ∂2µ(zi)

∂Ω2
m

]
(12.3.8)

If we take the average of this the second term will be zero because according to the
likelihood 〈mi〉 = M̃o + µ(zi,Ωm) so

FΩmΩm = −
〈

∂2

∂Ω2
m

lnL(mmm,zzz|Ωm)

〉
(12.3.9)

=
∑
i

1

σ2
i

(
∂µ(zi)

∂Ωm

)2

(12.3.10)
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The other components of the Fisher matrix are

FMoMo =
∑
i

1

σ2
i

(12.3.11)

FMoΩm =
∑
i

1

σ2
i

∂µ(zi)

∂Ωm

(12.3.12)

where

∂µ

∂Ωm

= 5 log10(e)
∂

∂Ωm

ln dL(z) = −2.17147
(1 + z)

2dL(z)

∫ z

0

dz′
(1 + z′)3 − 1

(Ωm(1 + z′)3 + (1− Ωm))3/2

(12.3.13)

We don’t yet know the redshifts of the supernovae that will be observed. However,
we can guess from past observations and/or the survey strategy what the redshift
distribution is likely to be. Let us say that it is something like f(z) ∝ xαe−z/zo .
Using this we can convert the sums into integrals∑

i

→ n

∫
dz f(z) (12.3.14)

So that for example

FΩmΩm =
n

σ2

∫
dz f(z)

(
∂µ(z)

∂Ωm

)2

(12.3.15)

were f(z) is normalized to one and σ2 has been approximated as constant for all
supernovae.

For 1 supernovae, σm = 0.3 mag, redshift distribution parameters α = 2 and
z0 = 0.15 the Fisher matrix is FΩmΩm = 1.67, FMoMo = 11.1, FΩmMo = 3.18 for the
fiducial model Ωm = 0.3. At a different point in parameters space, Ωm 6= 0.3, this
will change. And for a different redshift distribution, this would change.

12.4 The Asymptotic Normal Approximations

Let us expand the likelihood around the MLE (or MPE for a uniform prior)

lnL(ddd|θθθ) ' lnL(ddd|θ̂θθ) + (θθθ − θ̂θθ) · ∂ lnL
∂θθθ

∣∣∣∣
θθθ=θ̂θθ

+
1

2
(θθθ − θ̂θθ)T ∂2 lnL

∂θθθ∂θθθ

∣∣∣∣
θθθ=θ̂θθ

(θθθ − θ̂θθ) +O
(
|θθθ − θ̂θθ|3

)
(12.4.1)

= lnL(ddd|θ̂θθ) +
1

2
(θθθ − θ̂θθ)T ∂2 lnL

∂θθθ∂θθθ

∣∣∣∣
θθθ=θ̂θθ

(θθθ − θ̂θθ) +O
(
|θθθ − θ̂θθ|3

)
(12.4.2)
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Figure 12.1: The estimated supernova redshift distribution on the left and the fore-
casted constraints on Ωm and the peak luminosity normalization. Here 100 supernovae
are assumed and σm = 0.3 mag. The redshift distribution parameters are α = 2 and
z0 = 0.15.

where the second line comes from the requirement that θ̂θθ be the maximum. As we
have seen, there are no higher-order terms for a linear model. When the model is
nonlinear we would expect this approximation to get better as the amount of data gets
larger and the constraints on the parameters get stronger. In fact, if some conditions
are met, θ̂ is guaranteed to approach normality as the amount of data gets larger, see
section12.6.

Ignoring the higher-order terms, the average log-likelihood will be

〈lnL(ddd|θθθ)〉 '
〈

lnL
(
ddd|θ̂θθ
)〉
− 1

2
(θθθ − θ̂θθ)TFFF(θ̂θθ)(θθθ − θ̂θθ) (12.4.3)

This leads us to approximate the posterior of a future experiment as

p(θθθ) ' |FFF|
(2π)n/2

exp

[
−1

2
(θθθ − θ̂θθ)TFFF(θ̂θθ)(θθθ − θ̂θθ)

]
(12.4.4)

at least near its peak. With this you see that the Cramér-Rao limit (12.3.1) is the
conditional variance for one parameter given this posterior, with all other parameters
held fixed.

Following the rules for manipulating multivariant Gaussian distributions discussed
in section ?? we can find some useful properties of this approximation. The parameter
covariance matrix will be FFF−1. The variance of a single parameter after marginalizing
over all the other parameters is

σ2
θ '

[
FFF−1

]
θθ

(12.4.5)

You can also find the marginalized posterior for a subsample of parameters by invert-
ing FFF , removing the rows and columns that correspond to the marginalized parame-
ters, and then inverting back to get FFF in that smaller space and then use (12.4.4).
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Another very handy property of this approximation is that you can easily add
priors on the parameters from other experiments (at least up to second order in the
log of the likelihood). Since the log of the posterior is the sum of the log of the
likelihood and the prior it follows that

FFF tot = FFF +CCC−1
prior (12.4.6)

CCC−1
prior could be the precision matrix of the parameters from some previous experiment

or the Fisher matrix from some other possible experiment. For example, we might
ask, ”What are the constraints on the cosmological parameters from the supernova
experiment discussed above combined with the constraints we already have from CMB
observations?” Because measurements of the cosmological parameters in particular
tend to have large degeneracies, the answer to this question is not obvious. It could
be that one experiment has parameters that the other does not. In this case the rows
and columns of FFF corresponding to the parameters that the experiment does not have
should be set to zero which corresponds to no constraint.

Problem 56. Show that if the likelihood depends only on a single combination of
two parameters through a function ff(θ1, θ2), that is

lnL(xxx|θ1, θ2) = lnL (xxx|f(θ1, θ2)) (12.4.7)

then the Fisher matrix will have a determinant of zero. Assume the derivatives of
f(θ1, θ2) do not vanish. What is the eigenvector that has a zero eigenvalue in terms
of the derivatives of f(θ1, θ2)? This is a direction of degeneracy.

You will see by solving the above problem that degenerate combinations of the
parameters correspond to eigenvectors ofFFF with eigenvalues of 0. Their existence will
make FFF noninvertible. If this is the case, the degenerate combinations of parameters
should be found and replaced with a smaller set of nondegenerate parameters before
taking the inverse.

Any constraint plot derived from the approximate posterior (12.4.4) will be a series
of ellipses. Traditionally one plots the contours that contain 0.68, 0.95, and 0.99. The
correct contour levels for (θθθ − θ̂θθ)TFFF(θ̂θθ)(θθθ − θ̂θθ) can be found using a χ2 distribution
function from a statistical software library. Figure 12.1 shows such a plot for our
simplified cosmological supernova example.

Problem 57. Show that the area or volume of an ellipsoid in n dimensional
parameter space with

(θθθ − θ̂θθ)TFFF(θ̂θθ)(θθθ − θ̂θθ) < X2 (12.4.8)
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is

V =
1√
|FFF|

πn/2

Γ
(
n
2

) Xn

(n− 1)
(12.4.9)

and specifically in 2 dimensions V = π|FFF|−1/2X2. For this reason
√
|FFF| is sometimes

used as a figure of merit because it is a single number that signifies how well an
experiment will constrain a combination of parameters.

One last note on Fisher matrix forecasting. It is approximate and depends only on
the average of an expansion around the peak of the posterior. This approximation can
break down when the constraints are not very strong compared to nonlinearities in the
model and when there are significant nonlinear degeneracies in the parameters which
is often the case in the cosmological setting. It also estimates the variances in the
parameters with their minimum possible value, which is optimistic. For these reasons
and others it might not give accurate estimates of the errors that will eventually
be achieved. However, this method can be of great use in designing experiments
or planning a survey strategy. If you want to measure one or a few parameters in
particular and there is freedom in the experimental design (amount of data, range of
an independent variable, whether to survey a large area of sky shallowly or a smaller
area more deeply) you can calculate the Fisher estimate of the errors for different
experimental designs and find the optimal values.

Problem 58. The parameters magnitude, m, and redshift, z, have a Fisher matrix(
Fm,m 0

0 Fzz

)
(12.4.10)

What is the Fisher matrix for the parameters D and z if the absolute luminosity, or
magnitude, is perfectly known (m = 2.5 log10(L/D2) +mo)?

Now let’s say the absolute magnitude (M = 2.5 log10(L)) is not known, but, from
prior information, we know that it has a distribution M ∼ N (Mo, σM). What is the
Fisher matrix for D, z and M? If you marginalize over M what is the Fisher matrix
for D and z?

12.5 Fisher Matrix with Gaussian Distributed Data

If the data is Gaussian distributed and the mean, µµµ and/or the covariance, CCC, of the
distribution depends on some parameters α β then the Fisher matrix takes the form

FFFαβ = µµµ,Tα CCC
−1µµµ,β +

1

2
tr
[
CCC−1CCC,αCCC

−1CCC,β
]

(12.5.1)
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Problem 59. Show that equation (12.5.1) is correct. Use the identities

CCC−1,β = −CCC−1CCC,βCCC
−1 and

d

dβ
ln |CCC| = tr

[
CCC−1CCC,β

]
(12.5.2)

This form of the Fisher matrix comes up a lot in Cosmology. In the standard
cosmological model, the Fourier modes of the primordial density field are Gaussian
distributed which results in the same being true for the spherical harmonic modes
of the Cosmic Microwave Background (CMB) and for the Fourier modes of the dis-
tribution of galaxies (at least on large scales). The power spectrum of these modes
is dependent on Cosmological parameters and departures from General Relativity if
they exist. The Fisher matrix is used in forecasting constraints and in numerical
algorithms for finding best-fit parameters using large data sets. It is also often used
as a substitute for FFF in (12.1.6) when finding the maximum likelihood because FFF can
be computationally expensive and FFF often works just as well.

12.5.1 independent samples

Consider the special case of n independent normally distributed measurements with
the same means and variances. In this case, the covariance matrix is

CCC = σ2III CCC−1 =
1

σ2
III (12.5.3)

where III is the identity matrix. From( 12.5.1) we can find that

Fµµ =
n

σ2
(12.5.4)

Fµσ2 = 0 (12.5.5)

Fσ2σ2 =
1

2
tr
[
CCC−1IIICCC−1III

]
(12.5.6)

=
1

2σ4
tr [IIIIIIIIIIII] (12.5.7)

=
n

2σ4
(12.5.8)

So there is no unbiased estimator for the mean that has a variance smaller than
σ2/n. We found back in section (4.1) that the sample mean is unbiased and has a
variance of σ2/n so it is an efficient estimator. On the other hand, in section 4.2, we
found that the variance of the standard estimator for the variance, S2

n, is 2σ4/(n− 1)
whereas from the Fisher matrix above we can see that the Cramér-Rao limit is 2σ4/n
so S2

n has an efficiency of (n− 1)/n.
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12.5.2 Fisher matrix for a galaxy survey

The distribution of matter in the Universe on large scales is predicted to be a Gaus-
sian random field. In a Gaussian random field, the Fourier modes are statistically
independent Gaussian variables with variances P (kkk, z) which is the power spectrum.
A model is often used where the average number of galaxies in a cell, or volume in
space, is proportional to the density in that cell. The actual number of galaxies in the
cell is Poisson distributed around that average. The power spectrum of a Poisson field
without any density fluctuation would be equal to the inverse of the galaxy density,
n. So the total covariance matrix for the modes of the galaxy distribution is the sum
of the Gaussian and Poisson contributions,

Ckkkkkk′ = 〈δkkkδ′∗kkk 〉 = 〈δkkkδ−kkk〉δKkkkkkk′ =

(
P (kkk, z) +

1

n

)
δKkkkkkk′ (12.5.9)

where δK
kkkkkk′

is the Kronecker delta. We can use the result from section 12.5 for the
Fisher matrix of Gaussian data to get

Fθβ =
1

2

∑
kkk

[
1

(Pkkk + 1/n)2

∂Pkkk
∂θ

∂Pkkk
∂β

]
(12.5.10)

=
1

2

∑
kkk

[(
nPkkk

nPkkk + 1

)2
∂ lnPkkk
∂θ

∂ lnPkkk
∂β

]
(12.5.11)

The volume of a cell in discrete Fourier space is Vcell = (2π)3

Vsurvey
where Vsurvey is the

volume of the survey. So 2πk2dkdµ/Vcell = Vsurveyk
2dkdµ/(2π)2 where µ = cos(θ),

the cosine of the angle between the radial direction and kkk. So the sum over Fourier
modes can be substituted with an integral

∑
kkk

→ Vsurvey

(2π)2

∫ 1

−1

dµ

∫ kmax

kmin

k2dk. (12.5.12)

and the Fisher matrix is

Fθβ =
1

8π2

∫ 1

−1

dµ

∫ kmax

kmin

k2dk
∂ lnP (k, µ)

∂θ

∂ lnP (k, µ)

∂β
Veff(k, µ) (12.5.13)

where the effective survey volume is

Veff(k, µ) =

[
nPk

nPk + 1

]2

Vsurvey (12.5.14)
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This Fisher matrix ignores many things that exist in real galaxy redshift surveys.
Nonlinear structure formation which causes the density field to be non-Gaussian for
large kkk (small scales) destroys information about the cosmological parameters. The
scale-dependent and possibly nonlinear bias that relates galaxy density to mass den-
sity has not been considered and there are many sources of noise and incompleteness.
As a result, this is really a limit to how well a survey could do in constraining pa-
rameters.

12.6 Asymptotic behavior of the maximum likeli-

hood estimator

The maximum likelihood estimator (MLE) has some special properties in the limit
of a large amount of data that make it special and a popular option for an estimator
if it can be calculated. After our discussions in this chapter, we are in a position to
understand why the MLE has these properties.

They are the following:
The log-likelihood of n independent data points, or data sets, xn can be written

ln (L(xxx|θθθ)) = ln

(
n∏
i

L(xi|θθθ)

)
=

n∑
i

ln (L(xi|θθθ)) (12.6.1)

If θ̂θθ(xxx) is the MLE and θθθo is the true value of the parameter, under some often satisfied
requirements on the regularity of the likelihood function, in the limit of large amounts
of independent data:

1. θ̂θθ converges to θθθo in probability.1 This means that as the amount of data gets
very large the MLE will eventually get arbitrarily close to the true value. In
other words, the MLE is a consistent statistic.

2. The MLE is asymptotically normally distributed

(θ̂ − θo) ∼ N
(

0,
1

nFθθ

)
(12.6.2)

where Fθθ is the Fisher matrix for L(xxx|θo).

What follows is a ”physicist’s proof” of these properties, meaning that it is not
mathematically rigorous. I think it illustrates some more general methods for doing

1xn is said to convergence to xo ”in probability” if for all ε > 0 limn→∞ P (|xo − xn| > ε) = 0.

This is often denoted xn
p−→ x.
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such a proof and the limitations of this theorem without getting too lost in the details.
You can find more rigorous proofs in many statistics textbooks (for example Surfling
(1980)).

Let us define a scaled version of the log-likelihood

ln(θ) =
1

n
ln (L(xxx|θ)) =

i

n

n∑
I

ln (L(xi|θ)) (12.6.3)

Let us also define the function

l(θ) = E [ln (L(x|θ))] =

∫
dx L(x|θo) ln (L(x|θ)) (12.6.4)

By the law of large numbers (the sample mean is equal the the distribution mean for
an infinitely large sample) ln(θ)→ l(θ). This also applies to derivatives of ln(θ):

ln(θ) =
1

n
ln (L(xxx|θ)) =

1

n

n∑
I

ln (L(xi|θ))→ l(θ) (12.6.5)

l′n(θ) =
1

n

∂

∂θ
ln (L(xxx|θ)) =

1

n

n∑
I

∂

∂θ
ln (L(xi|θ))→ E

[
∂

∂θ
ln (L(x|θ))

]
(12.6.6)

l′′n(θ) =
1

n

n∑
I

∂2

∂θ2
ln (L(xi|θ))→ E

[
∂2

∂θ2
ln (L(x|θ))

]
= −Fθθ(θθθ) (12.6.7)

where the true Fisher matrix is Fθθ = Fθθ(θθθo). By the central limit theorem ln(θ),
being the sum of random numbers, is asymptotically normally distributed.

For all θ

l(θ) ≤ l(θo) (12.6.8)

This is true because

l(θ)− l(θo) = E [ln (L(x|θ))− ln (L(x|θo))] (12.6.9)

= E

[
ln

(
L(x|θ)
L(x|θo)

)]
(12.6.10)

≤ E

[(
L(x|θ)
L(x|θo)

)
− 1

]
ln(x) ≤ x− 1 (12.6.11)

=

∫
dx L(x|xo)

(
L(x|θ)
L(x|θo)

− 1

)
(12.6.12)

=

∫
dx L(x|θ)−

∫
dx L(x|θo) (12.6.13)

= 1− 1 (12.6.14)

= 0 (12.6.15)
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So the property 1) follows from

1. θ̂ maximizes ln(θ) by definition.

2. θo maximizes l(θ) by equation (12.6.8).

3. Since ln(θ)→ l(θ) for large n and for all θ, there maxima must be the same in
this limit.

Now for the distribution of θ̂. The mean value theorem of calculus holds that

f(a) = f(b) + f ′(c)(a− b) (12.6.16)

for some c between a and b, c ∈ [a, b]. We can apply this theorem to l′n(θ̂) which is
zero because of the definition of θ̂

l′n(θ̂) = l′n(θo) + l′′n(θ̃)(θ̂ − θo) (12.6.17)

so

(θ̂ − θo) = − l
′
n(θo)

l′′n(θ̃)
(12.6.18)

As n gets larger θ̂
p−→ θo and since θ̃ is between them it must be that θ̃

p−→ θo. The
variance numerator is

V ar [l′n(θo)] = E
[
(l′n(θo))

2
]
− E [l′n(θo)]

2
(12.6.19)

= E

( 1

n

n∑
i

L′(xi|θo)

)2
− E [l′n(θo)]

2
(12.6.20)

=
1

n2

n∑
i

E
[
(L′(xi|θo))2

]
− E [l′n(θo)]

2
(12.6.21)

=
1

n
Fθθ − E [l′n(θo)]

2
(12.6.22)

→ Fθθ
n
− E [l′(θo)]

2
(12.6.23)

=
Fθθ
n
− 0 (12.6.24)

The denominator goes to Fθθ by 12.6.7. So

V ar
[
(θ̂ − θo)

]
→ 1

nFθθ
(12.6.25)

And by the central limit theorem l′n(θo) is normally distributed.
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12.7 Likelihood ratio test

The fact that the maximum likelihood estimator is asymptotically unbiased and nor-
mally distributed under some conditions motivates applying the statistical tests that
were introduced in sections 8.1.1 through ?? for linear Gaussian models. Specifically,
we look at the likelihood ratio test for model selection here which is a generalization
of the ∆χ2 model selection discussed in section ??.

Again consider nested model M and K with numbers of parameters m and k with
m > k. The goodness-of-fit statistic is

T = −2 ln

[
L(D|θ̂θθM)

L(D|θ̂θθK)

]
= −2

[
ln
[
L(D|θ̂θθM)

]
− ln

[
L(D|θ̂θθK)

]]
(12.7.1)

The value of TH is > 0. In the limit that the MLE is normally distributed T is χ2
m−k

distributed like the ∆X2 statistic discussed in section ?? . The model M can be
rejected using the p-value from this distribution. You can also do an F-test for model
selection under the same conditions.

The statistic

T (θθθ) = −2 ln

[
L(D|θθθ)
L(D|θ̂θθ)

]
= −2

[
ln [L(D|θθθ)]− ln

[
L(D|θ̂θθ)

]]
(12.7.2)

can be used to do parameter estimation under the same conditions. It will be χ2
k

distributed where k is the number of parameters in the limit of large amounts of
data.

Before applying these tests it is important to check that the conditions for the
convergence to normality apply. Among the conditions are that the amount of data
be sufficiently large, the models M and K are nested, and that the true parameter
value θθθo is not on the edge of the allowed range. This last requirement comes about
because the regularity conditions on the likelihood eluded to in the last section are
not satisfied in this case. One requirement is that the likelihood must be thrice
differentiable which is not satisfied at the edge of allowed parameter space.

As discussed by Protassov et al. (2002), this test is not valid for the common
problem of detection but is often incorrectly used for it. For example, detecting a
spectral line or source on an image. In this case, the model for the data with the line
would be something like

F (λi) = θoFo(λi) + θ1f(λi) (12.7.3)

where Fo(λi) is the background or continuum and f(λi) is the line profile. The model
without the line corresponds to θ1 = 0. An emission line or source cannot have a
negative contribution so θ1 ≥ 0 so the parameter θ1 is on the edge of the parameters
space. The limit discussed in section 12.6 does not apply in this case.



Chapter 13

Numerical Sampling methods

Ideally one can write out an analytic expression for the likelihood or posterior and
perform integrals over it analytically or by standard numerical integration methods to
find expectation values of statistics or the integrated probability for a variable being
in a certain region. However, sometimes these integrals are very difficult to perform
because the dimension of the parameter(data)-space is high and sometimes there isn’t
an analytic expression for the probability (for example when a simulation is used to
go between parameters and predictions).

The next best thing to integrating over an analytic function is having a large
sample of deviates drawn from the distribution. With a sufficiently large sample
drawn from a distribution one can use the law of large numbers to estimate any
expectation value

E[g(x)] =

∫ ∞
−∞

dnx p(xxx)g(xxx) ' 1

n

∑
i

g(xxxi) (13.0.1)

where the xxxi’s are drawn from the distribution p(xxx).
In one dimension it is often possible to efficiently sample from a standard distri-

bution function and any good statistical software package will have functions to do
this. There are several methods used to find these deviates such as rejection and
transformation methods.

13.1 probability integral transform

We already know how to transform variables. If we have a pdf p(x) then in a new
variable f the pdf is p(x)dx

df
. If we require the distribution in f to be uniform then

p(x)dx
df

= const. or cdf = p(x)dx and when properly normalized
∫ f(x)

0
df = F (x) is

the cumulative distribution function. So if you can invert the cumulative distribution

213
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function to get the quantile function x = F−1(f) then you can draw f from a uniform
distribution between 0 and 1 and the corresponding x will be distributed according
to the pdf p(x) = d

dx
F (x). More formally:

Theorem: y = FX(x) is uniformly distributed if x is distributed such that its
cumulative distribution is FX(x).

Proof:

FY (y) = P (Y ≤ y) (13.1.1)

= P (FX(x) ≤ y) (13.1.2)

= P
(
x ≤ F−1

X (y)
)

(13.1.3)

= FX
(
F−1
X (y)

)
(13.1.4)

= y (13.1.5)

So y is uniformly distributed.

For example, say you want a random point within a sphere of radius R. The pdf
is

p(r, θ, φ)drdθdφ ∝ r2d cos(θ)dφ (13.1.6)

The cumulative distribution for the radius is

F (r) =
( r
R

)3

(13.1.7)

So inverting this gives

r = RF 1/3 (13.1.8)

So you can draw a uniform number from 0 to 1 and in this way find a random radius.
This same method could be used to find a position for a random particle within a
particular density profile for example.

In D dimensional space a random point within a D-ball (the interior of a D-1
sphere) can be found in the following steps

• Draw D normally distributed numbers, xxx. Since this is an isotropic distribution
the vector xxx/|xxx| is uniformly distributed on the unit (D-1)-sphere.

• Calculate |xxx|2 =
∑D

i x
2
i .

• Draw a uniform number, F , between 0 and 1.
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• Calculate the new radius with r = RmaxF
1
D .

• Renomalize the vector

yyy =
r

|xxx|
xxx (13.1.9)

See Press et al. (2007) for more information on generating random deviates in one
dimension.

13.2 numerical confidence levels

Frequentist hypothesis testing and parameter confidence intervals are based on com-
paring some statistic of the data to the distribution of that statistic given a certain
hypothesis or parameter set. One can think of many statistics whose distribution is
hard or impossible to calculate analytically. For example, say you have a model that
requires a lengthy calculation to predict the number of solar neutrinos you will detect.
The inputs to this calculation – temperature and density profile of the sun, scattering
cross-section of various nucleons, etc – are not perfectly known so the predictions are
not perfectly known even in terms of the average rate. What is the distribution of the
rate or the number of neutrinos that will be detected over a certain period of time?
Can your model be ruled out?

The situation is like this

Initial conditions / input variables → simulation / theory→ observables
(13.2.1)

Another example, say you have a numerical simulation that starts with some
primordial gas cloud and predicts the number of globular clusters in the galaxy that
form. Each time you run the simulation with random initial conditions taken from
a reasonable distribution – mass of cloud, random density fluctuations in the cloud,
etc. – you get out a different number of globular clusters. You observe the number
of globular clusters in the galaxies around us. You derive a statistic from them – for
example, the average number of globular clusters or the maximum number of globular
clusters, or the minimum number of globular clusters. You find that this statistic isn’t
the same as in your simulations. Can you rule out your model and conclude that there
is something incorrect in your simulation?

From a sample, one can easily estimate the probability of a statistic being larger
than X with k/n where k is the number of samples above and n is the total number
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of trials. This is only an approximation, however. How do we know the accuracy of
probability or confidence level given a sample?

For frequentists, this topic falls into the subject of quantile estimation that was
touched on in section 4.6. Here the boundary of the interval that contains some frac-
tion of the probability is estimated from the sample. Unfortunately, the distribution
of this estimate depends on the distribution itself so it is not possible to determine
how good the estimate is without assuming something about the distribution. But
if you knew the distribution you wouldn’t be trying to estimate its quantile from a
sample.

Here is where being a bit flexible with ideology comes in handy because we can
find a Bayesian constraint on the frequentist confidence level that assumes nothing
about the underlying distribution. If the probability of a statistic being larger than
X is p then we know that the probability of k samples out of n being larger than X
is given by the binomial distribution

P (k|p, n) =

(
n

k

)
pk(1− p)n−k (13.2.2)

Assuming a uniform prior and using the integral form of the beta function (appendix
A.4 equation A.4.6 ), we can renormalize this to get the posterior for p with a uniform
prior

P (p|n, k) =
Γ(n+ 2)

Γ(n− k + 1)Γ(k + 1)
pk(1− p)n−k (13.2.3)

=
(n+ 1)!

(n− k)!k!
pk(1− p)n−k (13.2.4)

for 0 ≤ p ≤ 1 and zero otherwise. This is true no matter what the underlying
distribution is.

The mode of this distribution can be found in the usual way (take the derivative
of lnP (p) and set it equal to zero)

pML =
k

n
(13.2.5)

which is just what you might have guessed. If 5% of the distribution is larger than
X then ∼ 5% of the sample should be larger than X.
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The average of the posterior is

〈p〉 =
(n+ 1)!

(n− k)!k!

∫ 1

0

dp pk+1(1− p)n−k (13.2.6)

=
(n+ 1)!(k + 1)!

k!(n+ 2)!
(13.2.7)

=
(k + 1)

(n+ 2)
(13.2.8)

, not equal to the mode, and we can find its variance〈
p2
〉

=
(n+ 1)!

(n− k)!k!

∫ 1

0

dp pk+2(1− p)n−k (13.2.9)

=
(k + 2)(k + 1)

(n+ 3)(n+ 2)
(13.2.10)

so

σ2
p =

〈
p2
〉
− 〈p〉2 (13.2.11)

=
(k + 1)

(n+ 2)

[
(k + 2)

(n+ 3)
− (k + 1)

(n+ 2)

]
(13.2.12)

' 3〈p〉 (1− 〈p〉)
n

+O(1/n2) (13.2.13)

The distribution is plotted in figure 13.1. The distribution is narrower for k/n near
the extremes, k ∼ n and k ∼ 0, for the same number of samples, but in these cases one
is usually more concerned with accuracy since the difference between 95% confidence
and 99% confidence is large while the difference between 25% and 50% doesn’t make
much difference since neither one would exclude the hypothesis significantly, i.e. it is
only in cases of high significance that you need a lot of samples.

If you want to know the p-value to an accuracy of 0.001 you will need

n >∼
3〈p〉 (1− 〈p〉)

(0.001)2
= 3× 106〈p〉 (1− 〈p〉) (13.2.14)

simulations. For 〈p〉 = 0.99 this is n >∼ 3× 104.

13.3 Monte Carlo Integration & Importance Sam-

pling

A related numerical technique to the subjects that will be discussed here is Monte
Carlo Integration. This is a way of using the law of large numbers (13.0.1) to estimate
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Figure 13.1: The posterior for the cumulative probability up to a boundary given
that the fraction of samples above the boundary is 50% (center) and 95% (right).
The total number of samples is as in the legend.

a multidimensional integral that cannot be done analytically or by using a standard
one-dimensional method such as the trapezoids or Romberg. It is typically used when
the number of dimensions is high and/or the boundaries to the region of integration
are complicated, and there is no other choice.

We want to estimate the integral of some function g(xxx),∫
∂V

dnx g(xxx) =

∫
∂V

dnx p(xxx)

(
g(xxx)

p(xxx)

)
(13.3.1)

=

∫ ∞
−∞

dnx p(xxx)

(
g(xxx)

p(xxx)

)
Θ(xxx ∈ V )) (13.3.2)

=

〈(
g(xxx)

p(xxx)

)
Θ(xxx ∈ V )

〉
p

(13.3.3)

' 1

n

∑
xi∈V

(
g(xxxi)

p(xxxi)

)
Θ(xxxi ∈ V ) xxxi ∼ p(x) (13.3.4)

where the xi’s are drawn from the distribution p(x). This is guaranteed to converge
to the correct answer as n → ∞ as long as p(xxx) 6= 0 everywhere that g(xxx) is not
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within the volume of integration. The estimated error on this would be

± 1

n

√√√√∑
xi∈V

(
g(xxxi)

p(xxxi)

)2

− 1

n

(∑
xi∈V

g(xxxi)

p(xxxi)

)2

(13.3.5)

The closer the sampling distribution p(xxxi) is to g(xxxi) the better will be the es-
timate. If some standard probability distribution resembles the function to be in-
tegrated, and it can be easily sampled from, it is useful to use it for g(xxx). Quite
complicated algorithms can be derived from this where the volume is partitioned and
the sampling function p(xxx) refined adaptively to improve convergence. We will not go
into those here, but the connection to what proceeded this section and what follows
should be clear.

Problem 60. Write a program that calculates the value of π by finding the area
within a unit circle by Monte Carlo. Draw uniform deviates from within a square that
circumscribes the circle. The area of the circle is on average the area of the circle
times the fraction of deviates that are within the circle. What is the error in this
estimate of π?

When MC integration is applied to probability distributions themselves it is called
importance sampling. If you want to know the expectation value of f(xxx) given a
pdf p(xxx), but you cannot sample directly from p(xxx) you can estimate it by sampling
from a distribution q(xxx). The expectation value is then

E[f(xxx)] =

∫ ∞
−∞

dxxx f(xxx)p(xxx) (13.3.6)

=
1

n

n∑
i

f(xxxi)

(
p(xxxi)

q(xxxi)

)
xxxi ∼ q(xxx) (13.3.7)

=
1

n

n∑
i

f(xxxi)wi wi =
p(xxxi)

q(xxxi)
(13.3.8)

It is required that q(xxx) > 0 everywhere p(xxx) > 0 for this to converge to the correct
expectation value. The closer q(xxx) is to p(xxx) the quicker this will converge. This
inspires an estimate for p(x) reminiscent of the bootstrap pdf

p̂(xxx) =
1

n

∑
i

wiδ
D(xxx− xxxi) (13.3.9)

13.3.1 importance sampling in Bayesian inference

While addressing a Bayesian inference problem it is often the case that you can
write down the likelihood and the prior, but you cannot integrate their product over



220 CHAPTER 13. NUMERICAL SAMPLING METHODS

parameter space. As a result, you cannot find the evidence or the means, variances,
covariances, etc. of the posterior. Remember also that the evidence is needed to
do a Bayesian model comparison. The model might be nonlinear and the number
of parameters large and/or the likelihood might not be a simple function. Again
we sample from some distribution q(θθθ) and for the evidence we want to integrate
f(θθθ) = L(ddd|θθθ)π(θθθ) so

E(ddd) =

∫ ∞
−∞

dθθθ L(ddd|θθθ)π(θθθ) (13.3.10)

' 1

n

n∑
i

L(ddd|θθθi)π(θθθi)

q(θθθi)
θθθ ∼ q(θθθ) (13.3.11)

Now if we want to average over the posterior p(θθθ|ddd) = L(ddd|θθθ)π(θθθ)/E(ddd) we can use
(13.3.8) with this estimate for the normalization to get

E[f(θθθ)] =

∫ ∞
−∞

dθθθ p(θθθ|ddd)f(θθθ) (13.3.12)

'
∑n

i wi f(θθθi)∑n
i wi

where wi =
L(ddd|θθθi)π(θθθi)

q(θθθi)
(13.3.13)

≡ f̄ (13.3.14)

An estimate of the variance of this is

σ2
f̄ =

∑n
i w

2
i

(
f(xi)− f̄

)2

[
∑n

i wi]
2 (13.3.15)

which can be monitored until the desired accuracy is obtained.
You can also find the posterior probability for θθθ being within some range or region

of parameter space V ,

P (θθθ ∈ V) =

∫ ∞
−∞

dθθθ p(θθθ|ddd)Θ(θθθ ∈ V) (13.3.16)

= E [Θ(θθθ ∈ V)] (13.3.17)

'
∑n

i wi Θ (θθθi ∈ V)∑n
i wi

. (13.3.18)

From this one could calculate credibility regions although the boundaries of a credibil-
ity region are usually taken to be surfaces of constant posterior probability (p(θθθ|ddd) =
const.) which can be difficult to find.

This is nice, but often not very useful when there are more than a couple of pa-
rameters and/or the likelihood constrains the parameters to a much smaller volume
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than the prior does. The reason is that in a high dimensional space, the volume where
the likelihood is large is often a tiny fraction of the volume allowed by the prior and
you generally don’t know where it is in parameters space before you start. Conse-
quentially, it is hard to pick a sampling distribution q(θθθ) that makes this calculation
efficient without having already solved the problem. This is one manifestation of the
curse of high dimensionality.

There are adaptive importance sampling algorithms that update the sampling
distribution, q(θθθ), to better fit the function to be integrated as the calculation pro-
ceeds. For example, you could sample from N (µµµ,ΣΣΣ) where µµµ and ΣΣΣ are estimates of
the mean and variance of the posterior based on the previous samples. The sampling
becomes more efficient and the answer more stable as time goes on. Many other
strategies are possible and widely used. The final weights wi and samples θθθi can then
be used to find the mean and covariance, or other moments, of the posterior. There
are also algorithms based on Sequential Importance Sampling or SIS where new
points are chosen based on the existing points. For a review of this subject see Tokdar
& Kass (2010).

13.4 Curse of high dimensionality

Consider a problem with D parameters so the parameter space is D-dimensional.
One approach might be to map out the posterior by evaluating it on a regular grid.
If we divide each dimension into 10, which would be very coarse gridding, the total
number of grid points will be 10D. If D is a modest number of 10 then this is 10
billion! Just to make a very coarse map that will probably not be good enough to
calculate anything quantitative.

Another way of seeing this is to look at the volume in spheres. Let us say that
the likelihood constrains the parameters to a spherical region in parameters space of
radius R and that the prior to a modestly larger region of radius 2R. The ratio of the
volumes is (2R/R)D = 2D which is 1,024 for D = 10 so if you drew points from the
prior only one in a thousand would land in the region where the likelihood is large. If
the radius were 10 times smaller it would be one in 10 billion. And the dimensionality
could easily be larger.

It is clear from these considerations that when the number of parameters gets
large some stratagem must be used to pick points that are not simply drawn at
random from the prior but are more efficient at exploring the likelihood. Adaptive
importance sampling is one approach. Another which is more commonly encountered
in astrophysics is Markov Chain Monte Carlo or MCMC.
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13.5 Markov Chains

In statistics, a chain is an ordered series of random numbers, xxx1 . . .xxxn . . . where
the conditional probability of each element given the other elements is specified –
p(xxxn|xxx1 . . . ). You can think of the whole chain as being a single random object. The
theory on chains is extensive. They can be used to model everything from gambling
to the stock market to chemical reactions and many other things. There are many
different types of chains with different properties. Here we will concentrate only on
the type of chain that is commonly used in scientific inference problems and the
properties that are important to this application and we will do so with informal
definitions and no proofs.

A Markov chain is a chain where the conditional probability of any element
xxxn can be expressed as a function of only the previous element xxxn−1, (The future
depends only on the present and not on the past, although the present does depend
on the past.) The probability p(xxxn+1|xxxn) is known as the Markov chain’s transition
kernel. If the transition kernel is independent of n it is said to be time-homogenious.
The chains we are interested in are ergodic chains. To be ergodic the chain must
be

1. irreducible - A chain starting at any state xxxo can reach any other state after a
finite number of steps, not necessarily 1 step.

2. aperiodic - The chain will not return to the same state after some fixed number
of steps and all multiples of this number of steps.

3. positive recurrent - The expectation value for the number of steps between any
two states is finite.

It is also true that a Markov chain is ergodic if there is a number N such that any
state can be reached from any other state in N steps and any number of steps larger
than N .

The most important consequence of ergodicity is that the chain has a unique
stationary distribution f(xxx) such that∫ ∞

−∞
dDxn f(xxxn)p(xxx1+n|xxxn) = f(xxx1+n). (13.5.1)

This implies ∫ ∞
−∞

dDxn p(xxx1+n,xxxn) = p(xxx1+n) = f(xxx1+n) (13.5.2)
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so the distribution of xxx1+n and xxxn are the same, f(xxx). We can produce chains whose
states are distributed according to f(xxx) if we can find a transition kernel that sat-
isfies this requirement. And the law of large numbers will allow us to estimate any
expectation value of this distribution

E[g(xxx)] = lim
N→∞

1

N

N∑
n=0

g(xxxn). (13.5.3)

Note that the transition kernel is not unique for a particular f(xxx). We can also select
one or two parameters and make a histogram which should be a representation of the
marginal stationary distribution.

Also note that having a stationary distribution does not mean that each element
in the chain is independent, i.e. p(xxxn+1,xxxn) 6= f(xxxn+1)f(xxxn). As we will see, states
that are separated in the chain are not always independent, but as the separation
increases they will eventually become independent.

Problem 61. If you have a Markov Chain with transition probability p(xxx1+n|xxxn)
for all n what is the probability of p(xxx1+n|xxxn−1)?

13.5.1 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is based on finding a transition kernel that will
have any desired stationary distribution. The kernel satisfies detailed balance:

p(xxxn+1|xxxn)f(xxxn) = p(xxxn|xxxn+1)f(xxxn+1) (13.5.4)

for all n. Detailed balance is often used in statistical physics for example in Einstein’s
famous derivation of stimulated emission. You can easily see that if p(xxxn+1|xxxn) satis-
fied detailed balance it will also satisfy (13.5.2).

You can think of this as if there were a flow of points out of state xxxn into xxxn+1

and a counter flow out of xxxn+1 into xxxn. The flow is proportional to the probability
of being in the first state times the probability of transitioning. Detailed balance
requires that the flow and counter flow between every pair of states are equal. The
stationary state will then be the steady state and the time the chain spends in a given
state will be proportional to f(xxx).

The HM algorithm is as follows. Starting at state xxxn

1. Choose a new trial point xxxt from a proposal distribution q(xxxt|xxxn).

2. Calculate

α(xxxt,xxxn) = min

{
1,
q(xxxn|xxxt)
q(xxxt|xxxn)

f(xxxt)

f(xxxn)

}
(13.5.5)
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3. If α < 1 draw a uniform deviate between 0 and 1. If α is larger than this
number accept the trial state and set xxxn+1 = xxxt. Otherwise set xxxn+1 = xxxn. In
other words, accept the trial state with probability α(xxxt,xxxn).

4. repeat

In this case, we can easily see how detail balance is satisfied by this algorithm

p(xxxn+1|xxxn)f(xxxn) = q(xxxn+1|xxxn)α(xxxn+1,xxxn)f(xxxn) (13.5.6)

=

{
q(xxxn|xxxn+1)f(xxxn+1) , q(xxxn|xxxn+1)f(xxxn+1) < q(xxxn+1|xxxn)f(xxxn)
q(xxxn+1|xxxn)f(xxxn) , q(xxxn|xxxn+1)f(xxxn+1) > q(xxxn+1|xxxn)f(xxxn)

(13.5.7)

and

p(xxxn|xxxn+1)f(xxxn+1) = q(xxxn|xxxn+1)α(xxxn,xxxn+1)f(xxxn+1) (13.5.8)

which will be the same as above in the same cases so (13.5.4) is satisfied.

13.5.2 choosing a proposal distribution

Although the MCMC is guaranteed to converge under the conditions mentioned
above, it might take a very long time. Like the age of the Universe long time if
you are not careful. The chain moves around parameter space in a random walk and
if it does not reach every region of significant probability many times it will not be a
good approximation of an independent sampling from the stationary distribution. To
achieve good mixing the rejection rate of proposed moves must not be too high or
too low. If it is too high the chain will have many duplicated points that will not fill
parameter space in an even way. If the rejection rate is too low the chain will move,
but not fast enough to get around the space. A rule of thumb is that you want a
rejection rate of about 80%, i.e. an acceptance rate of 20%. This rate can be changed
by adjusting the proposal function q(xxxt|xxxn).

There is a great deal of freedom in choosing a proposal function and finding the
right one for a particular problem is a bit of an art. Often (as in the original algorithm)
the proposal distribution is symmetric, q(xxxt|xxxn) = q(xxxn|xxxt), so that it doesn’t come
into α at all. Since we need to sample from q(xxxt|xxxn) it makes sense to use a standard
distribution with a well-implemented random deviate generator. A popular choice is
the multivariant Gaussian centered on the current point so xxxn+1 = xxxn + yyy where yyy is
sampled from a multivariate Gaussian. But the σ’s (or the covariance matrix CCC) is
not specified. These variances need to be adjusted until an acceptable rejection rate
is found. Reducing σ’s tends to decrease the rejection rate. When the σ’s are large
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Figure 13.2: On the top left are the points from a Metropolis-Hastings Markov Chain
for a simple 2-dimensional Gaussian. On the top right is a contour plot of the 2D
histogram of those points. Below is the target distribution and two representations
of the histogram.
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steps tend to put the proposed new point into regions that are far away from a peak
in the probability and thus are rejected.

There is nothing stopping one from making steps in one dimension at a time as
long as all dimensions are eventually explored. One can for example cycle through the
parameters or pick a parameter at random at each step. Sometimes this can improve
the convergence.

To initialize the chain one must guess a point in parameter space. This will
usually not be a place of high probability unless you are a good guesser. The chain
will be attracted by the high-probability regions (assuming there is some gradient in
the posterior which might not be the case because of numerical underflow problems),
but might take a while to get there. During this burn in period the chain is not
near its stationary distribution. For this reason, one usually discards the first part of
the chain. There is no perfect method for determining how long the burn-in period
should be. You can look at a plot of the parameters vs steps and usually, but not
always, it moves rapidly across parameter space and then settles into some location
like in figure 13.6). Other times the maximum of the distribution can be found by
some minimization technique such as was discussed in section ?? and then MCMC is
used to map the posterior to find variances and covariances. If the chain starts near
a maximum it might not be necessary to discard a burn-in period. If this is not the
case it is often useful to use a proposal distribution that jumps further during this
burning stage while the chain is searching for the peak(s) and then reduce the jumps
later for a new chain to get an acceptable rejection rate.

The biggest difficulties with MCMC arise when:

• The initial guess is so far from any peaks and the probability is so flat out
there that the chain never finds a peak. It is sometimes the case that in low
probability regions the calculation of f(xxx) has a numerical underflow error or
is dominated by numerical noise in which case the chain may wander around
without getting anywhere.

• The parameters are degenerate. Imagine a distribution f(xxx) that has a narrow
ridge. If the proposal distribution is isotropic it will be either too wide in one
direction so that the rejection rate is too high or it will be too small and creep
along the ridge very slowly. In the case of a linear degeneracy, you might be
able to learn something about the distribution and then make your proposal
distribution anisotropic in a way that improves convergence. A nonlinear de-
generacy is much more of a problem. In this case, a proposal distribution that
works well at one point in space will not work well at another. Imagine a f(xxx)
that is a function of x2

1 +2x2
2 (subscripts are parameters, not stages in the chain

here). The ”peak” or ridge will be an ellipse. If the ridge is very narrow a
good proposal distribution will be narrow in the direction perpendicular to the
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Figure 13.3: This is the same simple 2D Gaussian as shown in figure 13.2, but here
the width of the proposal distribution was chosen to be too small (σ = 0.01 here and
0.5 there).

ridge, but this is not the same direction everywhere. When possible, one should
try to eliminate known nonlinear degeneracies by changing the variables. (For
example, p = x2

1 + 2x2
2 would be a better variable to use in this toy example.)

• The distribution has multiple modes. This is probably the hardest problem to
deal with. If there are multiple peaks in the distribution that are separated
by regions of low probability then the chain can easily get caught in one peak
where its probability of transitioning to the other is very small. You might
adjust the proposal distribution to get a good rejection rate for one peak, but
that might make the probability of jumping between peaks effectively zero (see
figure 13.4). This problem is exacerbated in large dimensional space because
peaks that might not seem to be far away by their Euclidean distance, d are in
a volume that goes up like dD where D is the dimension of space. A defense
against this is to run multiple chains with different random initial states and
see if they find different modes.

Problem 62. Gibbs Sampling: Say there are k parameters. At each step, only one
parameter is updated. The current parameter to be updated will be x(i). Show that the
rejection rate will be zero (α(xxxt,xxxn) = 1) for the the proposal function

q(xxxn+1|xxxn) = f(x
(i)
n+1|xxx(i−)

n ) (13.5.9)

where xxx(i−) are all the other parameters that are not being updated in this step and
f(x

(i)
n+1|xxx

(i−)
n ) is the conditional target distribution.

The above problem shows that a special choice for the proposal function can result
in zero rejections. Gibbs sampling can be much faster than other forms of MH be-
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Figure 13.4: Two chains started at different initial points in a multimodal distribution.
In this case, the chance of jumping between modes within a single chain is small.

cause of this property, but the catch is that you need to be able to sample efficiently
from f(x

(i)
n+1|xxx

(i−)
n ). In certain circumstances, one might know this conditional proba-

bility, but not be able to calculate properties of the joint probability analytically. To
my knowledge, this situation doesn’t come up often in statistical inference but does
in modeling physical or social processes.

13.5.3 example

Figures 13.5 through 13.8 show an example. The (fake) data is shown in 13.5. The
likelihood function is Gaussian with varying but known σ’s. The model here is y =
p1(xp2)2 + 3(p1 + p2)2. Figure 13.6 shows the burn-in period. You can see that the
chain seems to have been attracted to some steady-state solution. Figure 13.7 shows a
chain 100,000 points long. The acceptance rate for this chain was 21.6%. An isotropic
Gaussian proposal distribution was used with σ = 0.3.

13.5.4 convergence

It is critical that one knows when the chain has converged. Unfortunately, there
are no foolproof ways to determine this. One thing you can do is calculate the
autocorrelation for each of the parameters as a function of the lag, m, the separation
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Figure 13.5: Simulated data.
Figure 13.6: The first 1,000 steps of the
MCMC starting at an initial guess (0, 0).

Figure 13.7: The 100,000 steps after dis-
carding the first 1,000.

Figure 13.8: Contours surrounding 68%,
95% and 99% of the points.
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Figure 13.9: The correlation coefficient as a function of lag in the MCMC chain. Shown are the
autocorrelation for the two parameters and the cross-correlation between them.

in the chain. It can be defined as

Cα,β(m) =

∑N−m
i=1 (αi − α)(βi+m − β)√(∑N−m

i=1 (αi − α)2
)(∑N

i=m(βi − β)2
) (13.5.10)

where α and β are parameter values. In the case of the autocorrelation α = β.
Cα,β(0) = 1 by construction. Distant points along the chain should not be correlated
so this function should oscillate about zero for a large lag, m. The first time this
function drops to zero or near zero is an estimate of the correlation length. Let
us call this Ncorr. Points separated by less than the correlation length will not be
independent. You can define an effective number of independent samples in the chain
as

Neff =
Nchain

Ncorr

(13.5.11)

We want this number to be large. We also want any statistic we are interested
in to depend on a number of points that is much larger than Ncorr. For example,
the difference between the 95% and 99% contour levels depends on only 4% of the
particles. This might be smaller than Ncorr.

Figure 13.9 shows the correlation function for the example given above. You can
see that the value of Ncorr is not precisely defined and this curve is a bit different every
time the calculation to run over. We can say Ncorr ∼ 200 − 600 to be conservative.
This means that our chain length of 100,000 only has about 500 to 200 effectively
independent samples.

In practice, this criterion can be fooled. For example, a chain that is caught in
one mode of a multimodal distribution might appear to be converging nicely.
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A somewhat more sophisticated method that takes into account multiple chains
is the Gelman-Rubin diagnostic R̂ (Gelman & Rubin (1992)). If we have m
independent chains each of length n and θαi is the ith parameter value of the αth
chain we can define the following quantities:

θ
α

=
1

n

n∑
i

θαi θ =
1

m

m∑
α

θ
α

(13.5.12)

s2
α =

1

n− 1

n∑
i

(θαi − θ
α
)2 B =

n

m− 1

m∑
α

(
θ
α − θ

)2

(13.5.13)

W =
1

m

m∑
α

s2
α V =

n− 1

n
W +

M + 1

nm
B (13.5.14)

R̂ =

√
V

W
(13.5.15)

R̂ is an estimate of the factor by which the variance in θ can be reduced by continuing
the chains. A R̂ ∼ 1 is a good sign. This should be done for all the parameters of
interest.

13.5.5 variations

There are many variations to the basic HM MC algorithm such as Differential Evo-
lution MCMC or DEMCMC (ter Braak 2006, ter Braak & Vgurt 2008, Nelson et
al. 2014), Affine-Invariant Ensemble MCMC (Goodman & Weare 2010, Foreman-
Mackey et al. 2013), Hamiltonian sampling MCMC, Gibbs sampling (see problem
62) and �Parallel Tempering MCMC (Gregory, 2006). These try to ameliorate the
basic problems with MCMC – adjusting the proposal function to fit the problem, and
dealing with degeneracy and multimodality. Some of them involve multiple chains
that run in parallel and communicate with each other and/or they have adaptive
ways of finding better proposal distributions. Many implementations of these algo-
rithms can be found on the internet. For a review of MCMC methods see Neal (1998)
(https://www.cs.toronto.edu/ radford/res-mcmc.html).

Problem 63. You do an MCMC calculation for parameters θ1 and θ2 using
a Gaussian proposal function. You now decide that it would be better if the first
parameter were ln(θ1). You change the proposal function to be a Gaussian in ln(θ1).
You change nothing else. Do you expect to get a different answer for the summary
statistics?
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Figure 13.10: Nested sampling starts with a random set of points in parameter space.
The average volumes between the contours are equal.

13.6 nested sampling & calculation of evidence

Another numerical technique that has become widely used for solving the Bayesian
inference problem and in astrophysics in particular is nested sampling. The appli-
cation of this to the inference problem is due to Skilling (2004a) ( see also the book
Silvia & Skilling (2006)).

Nested sampling is primarily a Monte Carlo integration technique applied to cal-
culating the evidence. You will recall that the evidence is

E =

∫
dnθ L(ddd|θθθ)π(θθθ) (13.6.1)

For the moment let’s take the prior π(θθθ) to be uniform, but restricted to a finite
volume in parameter space. Let’s find Na random points in this volume using a
standard random number generator {θθθ1 . . . θθθNa}. Now we evaluate the likelihood at
each of the points and sort them so that L(θθθ1) < L(θθθ2) < · · · < L(θθθn). We know
from our study of the extreme values (section 4.5 ) and Monte Carlo confidence levels
(section 13.2) that the probability (in this case proportional to the volume) of a new
point having L(θθθ) < L(θθθ1) can be estimated as P (L(θθθ) < L(θθθ1)) ' 1/Na. Or the
volume (probability) with a larger likelihood is

Vpr(L > L(θθθ1)) '
(

1− 1

Na

)
Vo (13.6.2)

where Vo is the initial volume of the parameters space. Now let’s pick another random
point from the volume but accept it only if its likelihood is larger than the minimum
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previously found, L(θθθ1). Once we have found a good point we discard θθθ1, add the new
point to the list, and resort them. The new lowest point might now be the old θθθ2 or
it might be the new point. Now we can apply the same argument to find an estimate
of the volume with L(θθθ) > L(θθθ1), but now with the condition that all the points are

required to be within the volume Vpr so the new volume is V
(2)
pr = Vpr(L > L(θθθ1)) '(

1− 1
Na

)
Vpr. If we continue to do this we will in the nth cycle get an estimate for

the volume of

Vpr(L > L(θθθn1 )) = V n
pr '

(
1− 1

Na

)n
Vo (13.6.3)

Where θθθn1 is the point in the set of Na points with the smallest likelihood after n
steps. We store all the θθθn1 ’s and Ln ≡ L(θθθn1 ).

The volume in parameter space (or probability according to the prior) associated
with the likelihood Ln can be found by interpolation

vn =
1

2

(
V n−1
pr − V n+1

pr

)
(13.6.4)

Using this we can estimate the evidence as

E '
M∑
n=1

Lnvn (13.6.5)

where M is the total number of cycles used. Typically the calculation is continued
until new cycles change E by less than the desired accuracy.

Any expectation value for any function of the parameters can then be estimated
with

E [f(θθθ)] '
∑M

n=1 f(θθθn1 )Lnvn
E

(13.6.6)

The approximation is often made that

V n
pr = exp

[
ln(V n

pr)
]

(13.6.7)

= exp

[
n ln

(
1− 1

Na

)]
Vo (13.6.8)

' exp

[
− n

Na

]
Vo (13.6.9)

so

vn '
1

2
e−

n
Na

(
e+ 1

Na − e−
1
Na

)
Vo (13.6.10)

' e−
n
Na

Na

Vo (13.6.11)
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You can see that the volume goes exponentially down with n.
What I have called volume here (V n

pr and vn) could just as well be called the
probability according to the prior. If the prior is not uniform then the algorithm
works just the same as long as the random points are drawn from the prior. This
might be possible using a standard numerical library or in some cases, an MCMC is
used for this.

Feroz & Hobson (2008) show that an estimate of the variance in ln E is

σ2
ln E '

‘H

Na

=
1

Na

M∑
n=1

Lnvn
E

ln

(
Li
E

)
(13.6.12)

where H is an estimate of the relative entropy (more on this later).

13.6.1 optimization

So far the nested sampling algorithm automatically zooms in exponentially on regions
of high posterior in parameter space and can estimate the integrals in high dimensional
space without gridding or making assumptions about the form of the posterior. But
as it zooms in, it becomes exponentially less efficient since most of the points that are
drawn randomly from the prior will not have likelihoods that are above the current
minimum.

The fix for this is to draw the points from a smaller and smaller region that
always contains the entire region with L(θθθ) > Ln. One popular software package
that does this is called multinest (Feroz & Hobson, 2008). In this case, points are
drawn uniformly from inside an ellipsoid that shrinks around the active points. The
difficulty is keeping the ellipsoid from shrinking too quickly and cutting off some of
the high L(θθθ) > Ln region while at the same time shrinking it quickly enough to
make the algorithm efficient. There are typically a few parameters involved with this
that require adjustments along with the number of active points. Drawing a point
from within an ellipsoid in D dimensional space can be done efficiently by drawing a
point from inside a D-sphere by the method given in section 13.1 and then stretching
it with the axis ratios of the ellipsoid.

A more recent publicly available implementation of nested sampling is called Poly-
Cord (Handley et al., 2015) which uses a slice sampling strategy to improve efficiency.

13.7 Simulated Annealing

Consider the following family of distributions

pλ(θθθ|DDD) ∝ L(θθθ|DDD)λπ(θθθ) (13.7.1)
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where λ is a real value ≥ 0. You can see that λ = 0 corresponds to the prior and
λ = 1 corresponds to the posterior. A strategy for improving the efficiency of an MC
chain might be to start chains with λ = 0 where it is usually easy to run an efficient
chain and then slowly increase λ through a series of values λn while letting the chain
equilibrate for each value. In this way, the points will be attracted to the regions of
high posterior values while at the same time hopefully hopping out of false maxima
before the chain gets stuck in them. If we continue beyond λ = 1 toward ∞ we can
even use this to find the maximum.

This procedure helps in finding the maximum of the posterior, but the resulting
chain is only guaranteed to converge to p(θθθ|DDD) in the same way that the final chain
with λ = 1 is guaranteed to do so. Alone it might help reduce the burn-in period,
but in some cases, it might require more evaluations than the burn-in period would
have required.

However, there are some interesting variations on this theme that are guaranteed
to converge to the posterior and generally make the sampling more efficient. They
generally calculate weights for each sampled point as they progress through the λn’s.
The BayesSys algorithm (Skilling, 2004b) and Annealed Importance Sampling (Neal,
2001) combine aspects of simulated annealing with importance sampling and Markov
Chains. These methods can also be used to calculate the evidence as well as the
posterior.

13.7.1 statistical physics analog

As the name suggests, there is an interesting correspondence between simulated an-
nealing and statistical physics. If we define the energy of state θθθ as

E(θθθ) = − lnL(θθθ|DDD)π(θθθ) (13.7.2)

then by (13.7.1)

pλ(θθθ) ∝ e−λE(θθθ) = e
−E(θθθ)
kBT . (13.7.3)

We can recognize this as the Gibbs distribution if we make the identification λ =
1/(kBT ) with kB being Boltzmann’s constant, as is done in the last equality. So we
can think of po(θθθ) (λ = 0) as the distribution of states at infinite temperature. As
λ→ 1 the temperature is reduced and the thermal energy plays a smaller part in the
distribution. λ =∞ corresponds to T = 0, the classical ground state.

The analogy can be stretched further by associating the evidence

E [λ] =

∫
dθθθ L(θθθ|DDD)λπ(θθθ) ∝

∫
dθθθ pλ(θθθ|DDD) (13.7.4)

with the canonical partition function.
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13.8 Approximate Bayesian Computation (ABC)

Another method that has gotten some attention recently is ABC is also known as
”Likelihoodless Bayesian Inference” (Akeret et al. (2015); Kacprzak et al. (2018) and
references therein for example). This is for the case where the likelihood is not
known in closed form, but one can simulate data sets given a set of parameters. This
approach of simulating data from parameters is often called forward modeling as
opposed to going from data to parameters through a likelihood function.

In this case, we have some method of simulating data given a set of parameters,
θθθ. This could be a cosmological n-body simulation or a simulation of an image or
spectra that includes additive and multiplicative noise, nondetections, biases, etc. A
single set of parameters will not correspond to a unique data set so every time the
simulation is run you get a different data set, DDD∗ even for the same θθθ.

We would expect that if the parameters are ”near” their true values in the sim-
ulated data, DDD∗ will be ”near” the observed data DDD. Let us invent some measure of
distance between data sets which we will denote ρ(DDD,DDD∗). The number of simulations
that land within ρ(DDD,DDD∗) < ε would be proportional to the probability. It follows
that

p (θθθ1|ρ(DDD,DDD∗) < ε)

p (θθθ2|ρ(DDD,DDD∗) < ε)
=
p (ρ(DDD,DDD∗) < ε|θθθ1) π(θθθ2)

p (ρ(DDD,DDD∗) < ε|θθθ2) π(θθθ1)
' Nθθθ1(ρ(DDD,DDD∗) < ε)

Nθθθ2(ρ(DDD,DDD∗) < ε)

Nθθθ2

Nθθθ1

(13.8.1)

where Bayes’ theorem is used for the first equality, Nθθθ is the number of simulations
run with parameters θθθ and Nθθθ(ρ(DDD,DDD∗) < ε) is the number of those simulations whose
data set satisfies the constraint. The second equality requires that the parameters
are sampled according to the prior, i.e. Nθθθ2/Nθθθ1 ∼ π(θθθ2)/π(θθθ1).

If the parameters are sampled according to the prior then we can make the ap-
proximation

p (θθθ|ρ(DDD,DDD∗) < ε) ∼ Nθθθ(ρ(DDD,DDD∗) < ε)

N(ρ(DDD,DDD∗) < ε)
∼ 1

N(ρ(DDD,DDD∗) < ε)

∑
i

δ(θθθ − θθθ∗i ) (13.8.2)

where the θθθ∗i are the parameter sets that resulted in data sets within ε of the observed
data. If ε is very small one expects this probability to converge to the true posterior.
Symbolically

p (θθθ|ρ(DDD,DDD∗) < ε)
ε→0−−→ p(θθθ|DDD) (13.8.3)

You can imagine doing a huge number of simulations and then throwing away all
the ones with ρ(DDD,DDD∗) > ε. If ε is small enough the θθθ values of these remaining sim-
ulations should be distributed according to p(θθθ|DDD). In practice this is very inefficient.
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As we have seen, the target volume in parameter space can be very small relative to
the total parameter space volume. In addition, in this case, the data space has an
even higher dimensionality, and the region within ε of the observed data is usually
even smaller. For this reason, ABC is usually avoided whenever it is possible to write
down an accurate likelihood.

To mitigate these problems the strategy is usually to start with a large ε and then
reduce it while simultaneously reducing the volume in θθθ-space from which the prior is
sampled. You can look at some of the methods for doing this in the references cited
above.

What is ρ(DDD,DDD∗)? The most obvious choice would be a least-squares or Euclidean
distance-type cost function,

ρ(DDD,DDD∗) =
∑
i

(di − d∗i )2 (13.8.4)

In practice one often does not require a point-by-point matching of simulated data
and real data because this reduces the acceptable volume in data space. Often some
statistics of the data are calculated and ρ(DDD,DDD∗) is constructed out of them.

For example, you might be simulating the distribution of matter in the universe
and be interested in models that match the observed power spectrum, but it is not
required that there be a galaxy cluster at the same place as in the real galaxy survey.
For such a case one might use

ρ(DDD,DDD∗) =
∑
k

(Pk − P ∗k )2

P 2
k

(13.8.5)

where Pk is the power spectrum of the data and the sum is over the measured Fourier
modes.
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Chapter 14

Information and entropy

[I]n studying probability theory, it was vaguely troubling to see refer-
ence to ”gaussian random variables”, or ”stochastic processes”, or ”sta-
tionary time series”, or ”disorder”, as if the property of being gaussian,
random, stochastic, stationary, or disorderly is a real property, like the
property of possessing mass or length, existing in Nature. Indeed, some
seek to develop statistical tests to determine the presence of these prop-
erties in their data...

Once one has grasped the idea, one sees the Mind Projection Fallacy
everywhere; what we have been taught as deep wisdom, is stripped of its
pretensions and seen to be instead a foolish non sequitur. The error occurs
in two complementary forms, which we might indicate thus: (A) (My own
imagination) → (Real property of Nature), (B) (My own ignorance) →
(Nature is indeterminate)

Jaynes [E. T. JAYNES (1989). PROBABILITY THEORY AS LOGIC Ninth
Annual Workshop on Maximum Entropy and Bayesian Methods. pp. 1–16.

14.1 information content of data

Shannon, studying signal processing, wanted to find an expression for the information
in a digital message. The idea is that certainty about the state of a system/message
implies known information. If we have only a distribution for the state of a system
we have less information about it than if we knew the exact state, i.e. the case where
the probability of state i is pi = 1. Shannon in 1948 tried to quantify the amount
of information that is required to go from a particular distribution to certainty. He
argued that a measure of information should satisfy the following axioms.

Shannon’s Axioms:

239
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• Axiom I : S is a real continuous function of the probabilities pi, S[p1, . . . , pm].

• Axiom II : If all pi’s are equal, pi = 1/m, then S[1/m, 1/m, . . . , 1/m] is an
increasing function of m. If all states are equally probable increasing the number
of states increases the uncertainty.

• Axiom II: The grouping property. For all possible inclusive groupings g =
1 . . . N of the states i = 1 . . . n we must have

S = S [{P}] +
∑
g

PgSg (14.1.1)

where

Pg =
∑
i∈g

pi (14.1.2)

Surprisingly there is a unique functional that satisfies these requirements called
the Shannon entropy given by

S[p] = −
m∑
i

pi ln pi (14.1.3)

If the sign is changed it is called the Shannon information. This is considered the
beginning of information theory, but as we will see, and you probably know, this
expression had already been found in a different context.

The third axiom is controversial and to many people not satisfactory. Other
entropies are possible and have been proposed. In a minute we will see that a variation
of the Shannon entropy that is often equivalent in practice has a much more satisfying
justification to my mind.

Some properties of S[p] are:

• S[p] ≥ 0

• For the uniform probability case pi = 1/m, the maximum ignorance case,
S[1/m, . . . , 1/m] = ln(m).

• In the case of complete certainty one of the probabilities will be 1 and all the
others 0. In this case S[1, 0, . . . , 0] = 0.

• If there are two variable x and y with joint probability p(x, y) there entropy is

Sxy = −
∑
xy

p(x, y) ln p(x, y) (14.1.4)
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and if they are independent p(x, y) = p(x)p(y) so

Sxy = Sx + Sy independent variable (14.1.5)

and in general

Sxy ≤ Sx + Sy (14.1.6)

You can define the analogous entropy of a continuous distribution,

S[p] = −
∫ ∞
−∞

dx p(x) ln (p(x)) (14.1.7)

This entropy has the important flaw that it is not coordinate invariant. If the coor-
dinates are changed to y = f(x) this should not change the amount of information
contained in the distribution. We will see later how this can be resolved, but for now,
we will take this to be the entropy of a continuous distribution.

14.1.1 the maximum entropy principle for choosing a distri-
bution

The maximum entropy principle, sometimes abbreviated MaxEnt, holds that the best
distribution to use for a variable is the one that has the maximum entropy (or least
information) subject to any prior constraints on the distribution. The idea is that
you should assume the least possible information beyond your constraints and this is
quantified by the entropy, i.e. maximum ignorance.

The maximum entropy distribution with only the normalization constraint (
∑m

i pi =
1) is of course pi = 1/m and the maximum entropy is Smax = ln(m). This is the state
of maximal ignorance or minimum information.

Now let us say that we have a constraint on the variance of a continuous distri-
bution, namely

V arp[x] = σ2 (14.1.8)

where σ2 is a constant. We can find the MaxEnt distribution using Lagrangian
multipliers

δ

{
−
∫ ∞
−∞

dx p(x) ln p(x)− λo
(∫ ∞
−∞

dx p(x)− 1

)
− λ1

(∫ ∞
−∞

dx x2p(x)− σ2

)}
= 0

(14.1.9)
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giving

− ln p(x)− 1− λo − λ1x
2 = 0 (14.1.10)

or

p(x) = exp(−1− λo − λ1x
2) (14.1.11)

= Ae−λ1x2

(14.1.12)

where A is a normalization constant. A and λ1 are determined by the two constraints
so

p(x) =
1√
2πσ

e−
x2

2σ2 (14.1.13)

The distribution with the maximum degree of ignorance subject to the constraint on
the variance is the normal distribution. This is another reason to favor the normal
distribution that has no apparent relation to the central limit theorem.

The entropy of a normal distribution is

Snorm =
1

2
+

1

2
ln
(
2πσ2

)
. (14.1.14)

Problem 64. Say you have the constraint

∞∑
i=0

ipi = µ (14.1.15)

What is the MaxEnt distribution?

Problem 65. Say you have the following constraints on a continuous distribution
p(x),

p(x) = 0 ∀x < 0 and 〈x〉 = µ (14.1.16)

What is the MaxEnt distribution?

14.2 Connection to Statistical Physics

Boltzman considered particles in a gas that can exist in momentum and position
states. The number of ways to occupy m states with N particles

Ω =
N !

n1! . . . nm!
(14.2.1)
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with
∑m

i ni = N . We can recognize this as the normalization for the multinomial
distribution that we have used many times. Using Sterling’s approximation

ln Ω = N lnN −N −
m∑
i

(ni lnni − ni) (14.2.2)

= N lnN −
m∑
i

ni lnni (14.2.3)

= N

[
lnN −

m∑
i

ni
N

(
ln
ni
N

+ lnN
)]

(14.2.4)

= −N
m∑
i

ni
N

ln
(ni
N

)
(14.2.5)

= −N
m∑
i

pi ln pi (14.2.6)

if pi = ni/N . You can see the clear resemblance to Shannon’s entropy.
Gibbs changed the interpretation of pi to be the probability of a collective state

i where the particles (spins, molecular species, etc.) are not necessarily independent
and not the single particle occupation of single-particle states (Gibbs, 1902). The
constant in front of the entropy is a matter of convention. In statistical physics,
the entropy is often defined with Boltzmann’s constant, kB, in front. In information
theory, the base 2 logarithm is often used in which case the entropy has units of
”bits”.

We have a series of constraints on the expectation values of the form

〈
fk
〉

=
m∑
i

fki pi = F k (14.2.7)

For example, F k could be the average energy Ē in which case fi = εi is the energy
of a specific state i. Or fki is the number of particles or molecules of a certain type
in state i then F k will be the average number of those species. Or F k could be the
magnetic polarization, etc. The state of the system is labeled by the F k’s.

The canonical distribution is found by maximizing the entropy

−
m∑
i

pi ln pi − λo

(
m∑
i

pi − 1

)
− λk

(
m∑
i

fki pi − F k

)
= const. (14.2.8)

− ln pi − 1− λo − λkfki = 0 (14.2.9)
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or

pi = e−λo−1e−λkf
k
i (14.2.10)

pi =
e−λkf

k
i

Z
Z =

∑
i

e−λkf
k
i = eλo−1 (14.2.11)

You can recognize Z as the partition function and see that

∂ lnZ

∂λk
= −F k (14.2.12)

The maximum entropy is

Smax = −
∑
i

pi ln pi (14.2.13)

= −
∑
i

e−λkf
k
i

Z

(
−λkF k − lnZ

)
(14.2.14)

= λkF
k + lnZ (14.2.15)

∂Smax
∂F k

=
∂λi
∂F k

F i + λk +
∂ lnZ

∂λk

∂λi
∂F k

(14.2.16)

=
∂λi
∂F k

F i + λk − F k ∂λi
∂F k

(14.2.17)

= λk (14.2.18)

For the canonical ensemble F k is the average energy of the system, E, fki is the
energy of state i, εi and

∂Smax

∂E
= λε ≡

1

kBT
(14.2.19)

so the Lagrangian multiplier associated with the internal energy is the inverse of the
temperature. In this case equation (14.2.15) becomes the perhaps familiar

Smax =
E

kbT
+ lnZ. (14.2.20)

The energy E (and the εi’s) will also depend on the volume

∂Smax
∂V

=
∂Smax

∂E

∂E

∂V
= − P

kBT
(14.2.21)
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Likewise, the Lagrangian multiplier associated with the average number of a chemical
species is the chemical potential, µk/kBT .

From (14.2.11), the canonical distribution is then

pi ∝ exp

[
− εi
kbT

]
(14.2.22)

The thermodynamic ”entropy of the system” is actually the maximum of the
entropies that are consistent with the constraints. From an information theory per-
spective, the thermodynamic entropy is the negative of the amount of information
that is needed to specify a microstate given a specified macrostate which corresponds
to a fixed average energy, volume, and number of particles.

14.3 Maximum Entropy as a method of inference

In chapter 5 we studied the Bayesian method for updating a probability from prior
information about the parameters π(θθθ) to a posterior distribution p(θθθ|ddd) given ad-
ditional information coming from new data ddd. Now let us consider an even wider
concept of updating our knowledge that can take into account not only data but also
information in the form of constraints on the expectation values.

Our prior knowledge is expressed through the prior distribution π(x). After we
take into account new information we will have a posterior distribution p(x). How do
we choose this distribution? If we have preferences for different distributions we can
rank them with a real-valued functional S[p, π]. The preferred distributions will have
larger S[p, π]. We can reasonably impose these three requirements on the functional
S[p, π],

Caticha’s Axioms:

• Axiom 1 : Locality In the absence of information about some domain D the
probability should not change, p(x|D) = π(x|D).

• Axiom 2: Coordinate invariance S[p, π] should remain the same when the co-
ordinates are changed.

• Axiom 3: Consistency for independent subsystems When a system is composed
of subsystems that are known to be independent, it should not matter whether
the inference procedure treats them separately or jointly.

(Caticha, 2008)
Amazingly, just these three axioms lead to a unique functional,

S[p, π] = −
∫
dx p(x) ln

(
p(x)

π(x)

)
(14.3.1)
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This is called the relative entropy.
Maximum Entropy Updating: Given prior knowledge π(x) and some new

information, the best posterior p(x) is the one that maximizes the relative entropy
while being consistent with the new information.

You can see the MaxEnt method as being an application of this to choosing a
distribution with a uniform prior π(x) = const. because in this case, the relative
entropy differs from Shannon’s entropy by a constant. Statistical physics can be seen
as another application of this principle as well.

14.3.1 Bayesian inference as a special case

Bayesian inference is a special case of maximum relative entropy inference. To see
this let us say that an experiment/observation results in the specific data values ddd
out of the possible data values xxx. The constraint requires that the posterior for the
data and the parameter have the property

p(xxx) =

∫
dθθθ p(θθθ,xxx) = δ(xxx− ddd) (14.3.2)

or

p(xxx,θθθ) = p(xxx)p(θθθ|xxx) = δ(xxx− ddd)p(θθθ|ddd) (14.3.3)

The relative entropy of the posterior to the prior is

S[p, π] = −
∫ ∞
−∞

dθθθdxxx p(xxx,θθθ) ln

(
p(xxx,θθθ)

π(xxx,θθθ)

)
(14.3.4)

Applying Lagrange’s method the following must be stationary with respect to
variations in the distribution function

δ

{
S[p, π]− λo

[∫ ∞
−∞

dθθθdxxx p(xxx,θθθ)− 1

]
−
∫ ∞
−∞

dxxx λ(xxx)

[∫ ∞
−∞

dθθθ p(xxx,θθθ)− δ(xxx− ddd)

]}
= 0

(14.3.5)

Note that the constraint must hold at every xxx so there are an infinite number of
Lagrange multipliers. This implies

− ln p+ ln π − 1− λo − λ(xxx) = 0 (14.3.6)

or

p(θθθ,xxx) = π(θθθ,xxx)e−1−λoe−λ(xxx) (14.3.7)

=
π(θθθ,xxx)e−λ(xxx)

Z
(14.3.8)
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where Z is a normalization constant. Now applying the constraint∫ ∞
−∞

dθθθ p(θθθ,xxx) =

∫ ∞
−∞

dθθθ
π(θθθ,xxx)e−λ(xxx)

Z
=
π(θθθ)e−λ(xxx)

Z
= δ(xxx− ddd) (14.3.9)

Substituting into (14.3.8) gives

p(θθθ,xxx) =
π(θθθ,xxx)

π(xxx)
δ(xxx− ddd) (14.3.10)

Finally

p(θθθ) =

∫ ∞
−∞

dxxx p(θθθ,xxx) =
π(θθθ,ddd)

π(ddd)
=
π(ddd|θθθ)π(θθθ)

π(ddd)
(14.3.11)

Note that the Bayesian updating is not the result of Bayes’ theorem. In a strict
sense, all three distributions on the right-hand side are prior distributions.

This new maximum entropy updating allows for more freedom in what can be
considered new information. In the Bayesian method new information comes from
new data and a likelihood function, but new information can now come in the form
of a constraint on the data or the parameters.

14.4 relative entropy

The relative entropy is also called the Kullback–Leibler divergence or distance.
It is used in many contexts and has different interpretations. In an important sense,
it is more fundamental than the entropy. An important property is

S[p, q] ≥ 0 (14.4.1)

and S[p, q] = 0 only when p(x) = q(x). As required by the axioms, S[p, q] is invariant
under transformations of the random variables x.

The relative entropy is often used as a measure of how distant two distributions
are from each other. It is not actually a true distance however because it is not
symmetric, S[p, q] 6= S[q, p].

S[p, q] can be interpreted as the amount of information gained when the distribu-
tion is updated from q(x) to p(x). For example, the information a new experiment
adds to our knowledge of some parameters can be quantified in this way. This can
be useful in planning an experiment when many parameters are being measured.

Another situation in which this comes up is when a new posterior is found, perhaps
in a high dimensional parameters space, and one wants to quantify how much extra
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information has been gained by including the latest data. The relative entropy of
the posterior with respect to the prior can be used to quantify this. It is not always
clear whether particular constraints are a result of the new data or the (sometimes
somewhat arbitrary) prior especially when significant parameter degeneracies exist.
The relative entropy between the marginal posterior and prior can be used to quantify
how much information about a particular parameter or subset of parameters has been
gained.

For reference and to establish some intuition the relative entropy of two Gaussians
is

S[p, q] =
1

2

[
ln

(
|CCCq|
|CCCp|

)
+ tr

[
CCCp(CCC

−1
q −CCC

−1
p )
]

+ (µµµp − µµµq)TCCC
−1
q (µµµp − µµµq)

]
(14.4.2)

In univariant case this is

S[p, q] =
1

2

[
ln

(
σ2
q

σ2
p

)
+
σ2
p

σ2
q

− 1 +
(µp − µq)2

σ2
q

]
(14.4.3)

=
1

2

[
ln

(
σ2
q

σ2
p

)
+

(σ2
p − σ2

q ) + (µp − µq)2

σ2
q

]
(14.4.4)

The first part expresses a change in the variances or constraining power of the distri-
butions and the second comes from a mismatch in the means of the distributions.

The relative entropy of the posterior to the prior is sometimes called the surprise

S = S[p(θθθ|D), π(θθθ)] =

∫ ∞
−∞

dθθθ p(θθθ|D) ln

[
p(θθθ|D)

π(θθθ)

]
(14.4.5)

=

∫
dθθθ p(θθθ|D) ln

[
L(DDD|θθθ)π(θθθ)

E(DDD)π(θθθ)

]
(14.4.6)

= 〈ln [L(DDD|θθθ)]〉p(θθθ|D) − ln E(DDD) (14.4.7)

This term is also used for other measures of how different the posterior is from the
prior. This is a measure of the information gain that comes from the data.

In the special case where the likelihood is Gaussian, the prior is uniform over a
volume Vπ and the likelihood is very small on all the boundaries of this prior volume
so that integrals over the posterior are not affected by it, the surprise reduces to

S = −d
2

(1 + ln(2π))− 1

2
ln |CCC|+ lnVπ (14.4.8)

where d is the dimension of θθθ-space. For comparison, the evidence is

ln E = lnLmax +
d

2
ln(2π) +

1

2
ln |CCC| − lnVπ (14.4.9)

= −S + lnLmax − d

2
. (14.4.10)
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14.5 equivalence of maximum likelihood distribu-

tion & minimum relative entropy

Let us say we have an experiment that has a categorical outcome. There are k possible
outcomes. The number of observed events in category i is ni. We have a model that
predicts the probability of outcome i as pi(θθθ). The parameters of this model are θθθ.

The likelihood is a multinomial distribution

L({ni}|θθθ) =
N !∏k
i ni!

k∏
i

p(θθθ)ni (14.5.1)

We can find the maximum likelihood by taking the derivative

∂

∂θ
lnL({ni}|θθθ) =

∂

∂θ

[
lnN ! +

k∑
i

ni ln pi(θθθ)−
k∑
i

ni!

]
(14.5.2)

=
k∑
i

ni
∂

∂θ
ln pi(θθθ) (14.5.3)

=0 (14.5.4)

Now let’s look at this problem differently. The empirical, or bootstrap, distribu-
tion is pi = ni/N . We could look for the distribution within the family of distributions
parameterized by θθθ that is ”closest” to the empirical distribution. To define ”closest”
we might use the minimum relative entropy or Kullback–Leibler distance between the
empirical and trial distributions.

S
[ni
N
, pi(θθθ)

]
= −

k∑
i

ni
N

ln

(
ni

Npi(θθθ)

)
(14.5.5)

Its minimum occurs at

∂

∂θ
S =

1

N

k∑
i

ni
∂

∂θ
ln pi(θθθ) = 0 (14.5.6)

which is the same solution as for the maximum likelihood.
In machine learning the relative entropy is often used as a cost function. In this

context, one has a training set {yyy,xxx} where xxx are the feature or independent variables
and yyy are the dependent variables. The model gives a probability pi(θθθ,xxx). The relative
entropy is minimized to find the best θθθ. We can see now that this is equivalent to
finding the maximum likelihood solution.
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I have presented this as for categorical dependent variables, but you can see that
it works fine for the continuous variables as well. In this case, all the ni’s are one. It
is also sometimes said that the cross-entropy is used as a cost function. This comes
from the decomposition

S[p, q] =−
∫
dx p(x) ln[p(x)] +

∫
dx p(x) ln[q(x)] (14.5.7)

=− 〈ln p〉+H[p, q] (14.5.8)

=S[p] +H[p, q] (14.5.9)

H[p, q] is called the cross-entropy. You can see that in this case the 〈ln p〉 will not
come into the minimization since it is not a function of the parameters θθθ so minimizing
the cross-entropy will be equivalent to minimizing the relative entropy.

One thing to point out here is that there doesn’t appear to be any deep reason
why the correct distance is S[ni/N, p(xi|θθθ)] and not S[p(xi|θθθ), ni/N ]. These are not
equal. In the second case ni might be zero for some xi where p(xi|θθθ) is not zero. This
would make the relative entropy undefined which is a practical, but not theoretically
motivated reason to prefer one over the other.



Appendix A

Selected Problem Solutions

1 Problem 1.

1. This is Bayes’ theorem

P (R|B) =
P (B|R)P (R)

P (B)
(A.0.1)

2. This is the product rule

P (B,R) = P (B|R)P (R) (A.0.2)

3. This is the extended sum rule

P (B||R) = P (B) + P (R)− P (B,R) (A.0.3)

= P (B) + P (R)− P (B|R)P (R) (A.0.4)

2 Problem 2.
Let’s say the C means the person has cancer and T means the person’s test is

positive.

1. From Bayes

p(C|T ) =
P (T |C)P (C)

P (T )
(A.0.5)
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P (T ) can be calculated by summing over the possible states of having and not
having cancer:

P (T ) = P (T |C)P (C) + P (T |C)P (C) = P (T |C)(1− P (C)) + P (T |C)P (C)
(A.0.6)

= (1− 0.90)× (1− 0.0001) + 0.90× 0.0001 (A.0.7)

= 0.10008 (A.0.8)

p(C|T ) =
0.9× 0.0001

0.10008
= 0.0009 (A.0.9)

This is a pretty useless test! Rare diseases require exceptionally accurate tests.

2. Again the product rule

p(F,C) = p(F |C)P (C) = [1− p(T |C)]p(C) = (1− 0.9)× 0.0001 = 0.00001
(A.0.10)

3 Problem 3.
If the probability of getting a 6 is p6 and the probability of getting a 5 is p5 then

the probability of getting any other number is 1 − p6 − p5. Using the multinomial
distribution distribution, the probability of getting two 6s and one 5 out of 6 is

P =
6!

2!1!3!
(p6)2p5(1− p6 − p5)3 (A.0.11)

If p6 = 2pi for i 6= 6 then normalization requires that p6 = 2/6 and p5 = 1/6 and

P =
6!

2!1!3!

(
2

6

)2
1

6

(
4

6

)3

' 0.3292 . . . (A.0.12)

4 Problem 4.
I am going to ignore the fact that ”years that are divisible by 100, but not by

400, do not contain a leap day”. I will also ignore the possibility that the members
of this group might be related in some way that makes it more likely that they were
born within a few years of each other. Under these assumptions/approximations the
chance of being born on a leap day, pL, is one-fourth of the chance of being born on
any other day, i.e. pL = pi/4. Since there are 356 other days and the total probability
for all the days must add up to 1, pL + 365pi = 1, it follows that

pi =
1

365 + 1/4
pL =

1

4× 365 + 1
=

1

1425
(A.0.13)
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Let’s say the number of birthdays on a normal day i is ni and the number of birth-
days on the leap day is nL. The probability of having any combination of birthdays
is given by the multinomial distribution (section ??)

P (n1 . . . n365, nL) =
n!

nL!
∏365

i=1 ni!
pnLL

365∏
i=1

pnii (A.0.14)

=
n!

nL!
∏365

i=1 ni!
pnLL p

∑
i ni

i (A.0.15)

where some of the ni will have to be zero if n < 366. Just like for the no leap day
case, we approach this problem by calculating the probability of no two birthdays
being the same and then subtract it from 1. In this case, there are two distinct cases
that might occur: one is where no one has a leap day birthday and the other is where
one person has a leap day birthday. All the n’s must be 1 or zero so the denominator
above will always be 1.

For the case of no leap day birthday
∑

i ni = n. We can choose these n dis-
tinct birthdays in

(
365
n

)
ways that all have the same probability of happening so the

probability is

P (all normal days) =

(
365

n

)
n!pni (A.0.16)

If one of the days is a leap day, nL = 1 and
∑

i ni = n− 1 and there are
(

365
n−1

)
ways

of picking the normal days so

P (1 leap day) =

(
365

n− 1

)
n!pn−1

i pL (A.0.17)

The probability of having no two birthdays the same is then 1 minus the sum of
these probabilities

P = 1− n!

365.25n

[(
365

n

)
+

1

4

(
365

n− 1

)]
(A.0.18)

= 1− n!

365.25n

(
365

n

)[
1 +

1

4

n

(366− n)

]
(A.0.19)

This will decrease the probability slightly relative to the no leap year result.
7 Problem 7.
Imagine a machine that scoops gelato automatically and the flavors all lined up

in a row. The machine can do two actions. It can scoop and it can move to the next
flavor. To make one bowl of gelato and get to the end of the flavors it must scoop
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n times and move f − 1 times so it does n + f − 1 actions. Any combination of
moves and scoops will make a valid bowl, but some combinations will make the same
bowl. There are

(
n+f−1
f−1

)
ways of choosing the f − 1 moves which is the same thing

as
(
n+f−1

n

)
, the number of ways to pick n scoops.

8 Problem 8.
The probability of a star not being within a sphere of radius r is derived in the

same way as in section 3.7. It is an exponential with ν = ηV = 4
3
πr3η. Then the

probability of a star being in a shell between r and r+dr is 4πηr2dr. The probability
of these both being true at the same time is the product,

p(r)dr = 4πr2η exp

[
−4

3
πηr3

]
dr (A.0.20)

=

(
r

ro

)2

e−
1
3( r

ro
)

3 dr

ro
(A.0.21)

where ro ≡ (4πη)−1/3. You can verify that this is properly normalized by integrating
it from 0 to ∞.

The average can be found by looking up the integral which gives

〈r〉 = 31/3Γ

(
4

3

)
ro ' 1.2879 ro (A.0.22)

9 Problem 9.
In the rest frame of a gas atom, the particle is moving at a speed |v − vt| where

vt is the velocity of the atom. For the particle to travel for a time t without coming
within

√
σ/π of an atom there must be a cylinder of volume σt|v − vt| that contains

no atoms. The number density of atoms with velocities between vt and vt + δvt is
ηf(vt)δvt where f(vt) is the velocity distribution. The probability of none of these
being in the cylinder is

p(0|vt) = e−ησt|v−vt|f(vt)δvt (A.0.23)

We want the probability that no atoms of velocity v1
t and v2

t , etc. to be in the cylinder
so we can use the product rule

p(0) = p(0|v1
t )p(0|v2

t ) . . . (A.0.24)

= e−ησt|v−v
1
t |f(v1

t )δvte−ησt|v−v
2
t |f(v2

t )δvt . . . (A.0.25)

= e−ησt
∑
i |v−vit|f(vit)δvt (A.0.26)

' e−ησt
∫
dvt|v−vit|f(vit) (A.0.27)

= e−ησt〈|v−vt|〉 (A.0.28)
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At the end of the cylinder, there must be an atom of velocity v1
t or v2

t , etc. so
we use the sum rule

p(1|t, t+ δt)dt = ησdt
∑
i

|v − vit|f(vit)δvt (A.0.29)

= ησ〈|v − vt|〉dt (A.0.30)

Putting these together along with the fact that the particle travels l = vt during time
t gives

P (l)dl = ησ
〈|v − vt|〉

v
e−ησv〈|v−vt|〉l dl (A.0.31)

= e−
l
lo
dl

lo
(A.0.32)

where lo = v/(ησ〈|v − vt|〉). It is an exponential distribution. The average is lo.
12 Problem 12.

The distribution for two independent normally distributed variables is

pxy(x, y) = px(x)py(y) =
1

2πσ2
exp

[
−x

2 + y2

2σ2

]
(A.0.33)

Let’s define a new variable z ≡ x/y and transform variable:

pz,y(z, y) = pxy(yz, y)

∣∣∣∣∂x∂z
∣∣∣∣ = pxy(yz, y)|y| (A.0.34)

=
1

2πσ2
|y| exp

[
−y

2(z2 + 1)

2σ2

]
(A.0.35)

Now we can find pz(z) by marginalizing over y:

pz(z) =

∫ ∞
−∞

dy pzy(z, y) (A.0.36)

=
1

2πσ2

∫ ∞
−∞

dy |y| exp

[
−y

2(z2 + 1)

2σ2

]
(A.0.37)

=
1

π(z2 + 1)

∫ ∞
0

dw we−w
2/2 (A.0.38)

=
1

π(z2 + 1)
(A.0.39)

The case where the variables x and y have different variances follows similarly.
The result is

p(z) =
γ

π(z2 + γ)
(A.0.40)
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where γ = σx/σy.
13 Problem 13.

The characteristic function for a Poisson distribution is

C(k) = exp
[
λ(eik − 1)

]
(A.0.41)

The characteristic function for the sum of random variables is the product of their
characteristic functions so

Cs(k) = C1(k)C2(k) = exp
[
(λ1 + λ2)(eik − 1)

]
(A.0.42)

which is the characteristic function of a Poisson distribution. So the sum is Poisson
distributed with a mean of λ1 + λ2.

16 Problem 16.
The joint pdf is

p(x, y) =

{
1
2
δD(x2 − y) , −1 < x < 1 and 0 < y < 1

0 , otherwise
(A.0.43)

This cannot be written in the form p(x)p(y) so they are not independent. The corre-
lation is

Cxy = E[xy]− E[x]E[y] (A.0.44)

=

∫ 1

−1

dx

∫ 1

0

dy
1

2
δD(x2 − y)− 0 (A.0.45)

=

∫ 1

−1

dx
1

2
(A.0.46)

= 0 (A.0.47)

The variables are not correlated.
18 Problem 18.

This easily comes from the fact that the characteristic function for the sum of
two variables is the product of the characteristic functions of each.

φs(t) = φx(t)φx′(t) (A.0.48)

= (1− 2it)−n/2(1− 2it)−m/2 (A.0.49)

= (1− 2it)−(n+m)/2 (A.0.50)

19 Problem 19.
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The distribution for the velocity is

p(v1, v2, v3) =
1

(2π)3/2σ3
e−

1
2

∑
i

v2
i
σ2 (A.0.51)

We can recognize that

z =
∑
i

v2
i

σ2
(A.0.52)

will be χ2 distributed with 3 degrees of freedom so its distribution is

p(z)dz =
2√
π
z1/2e−z/2dz (A.0.53)

The kinetic energy of a particle is

ε =
1

2
m|v|2 =

mσ2

2
z (A.0.54)

Changing variables from z to ε gives

p(ε)dε =
2√
π

1

(mσ2)3/2
ε1/2e−

ε
mσ2 dε (A.0.55)

The exponential can be recognized as the Boltzmann factor with the identification
mσ2 = kbT , Boltzmann’s constant times temperature. The ε1/2 factor represents the
phase-space being larger for larger ε.

20 Problem 20.

V ar
[
θ̂
]

=
1[∑
i

1
σ2
i

] (A.0.56)

21 Problem 21.

wi =

∑
j C
−1
ij∑

kj C
−1
kj

(A.0.57)

22 Problem 22 .
The estimator takes the same form,

θ̂ =
∑
i

wixi (A.0.58)
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The constraint is the same, but the variance includes more terms. The solution is

wi =

∑
j Cij1j∑

ij 1jCij1i
(A.0.59)

where 1 is a vector of ones.
23 Problem 23 .

The distribution of observed energies can be written

p(E) = f(E) + δD(E − Emax)

∫ ∞
Emax

f(E) (A.0.60)

= f(E) + δD(E − Emax) [1− F (Emax)] (A.0.61)

for E ≤ Emax and zero for E > Emax. The mean is thus

〈E〉 =

∫ Emax

0

dE Ef(E) + Emax [1− F (Emax)] (A.0.62)

If we did not detect photons Emax above this would be

〈E〉 =

∫ Emax

0
dE Ef(E)

[1− F (Emax)]
(A.0.63)

24 Problem 24 .
The cumulative distribution for one number in this case is

F (x) =
x

L
0 ≤ x ≤ L (A.0.64)

Applying (4.5.1) gives

p(xmax|N) =
N

LN
xN−1

max 0 ≤ xmax ≤ L (A.0.65)

25 Problem 25 .
The dust particles are uniformly distributed so the distribution of the distance

from the center of the balloon of radius R is

p(r)dr =
3

R3
r2dr (A.0.66)

implied the r < R. The cumulative distribution is

F (r) =
( r
R

)3

(A.0.67)
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Using equation (4.5.1) we find the distribution for the most distant dust particle from
the center to be

p(rmax) =
3N

R

(rmax

R

)3N−1

(A.0.68)

The distance between the skin and this particle is R− rmax.
26 Problem 26 .

1. The likelihood is

L({ti}|τ) =
∏
i

1

τ
e−

ti
τ =

1

τn
e−

nt̄
τ . (A.0.69)

Note that the average of the data t̄ is a sufficient statistic in this case. The
evidence is

E({ti}) =

∫ τ

0

dτ
1

τn
e−

nt̄
τ = (nt̄)1−n

∫ ∞
0

dx xn−2e−xnt̄ = (nt̄)1−nΓ(n− 1)

(A.0.70)

So the posterior is

p(τ |{ti})dτ =

(
nt̄

τ

)n
e−

nt̄
τ

Γ(n− 1)

dτ

(nt̄)
(A.0.71)

2. Taking the log of the posterior gives

ln(p(τ |{ti})) = −nt̄
τ
− n ln(τ) + . . . (A.0.72)

which is maximized at τ = t̄. Note that the mean of the exponential distribution
is τ so this is the same as the most obvious estimator for the mean.

27 Problem 27.
In this case

f(m) = −(1 + α)

mmin

(
m

mmin

)α
α < −1 (A.0.73)

The log of the likelihood is

lnL = n ln(−1− α) + α

n∑
i=0

ln

(
mi

mmin

)
− n ln (mmin) (A.0.74)
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Taking its derivative and setting it to zero gives the solution

α̂ = −

1 +
1

1
n

∑n
i=0 ln

(
mi

mmin

)
 (A.0.75)

28 Problem 28 .
If the probability for a νe is p then the probability of a not νe is 1− p. With the

selection function, the probabilities are

pe =
pSe

pSe + (1− p)S−e
(A.0.76)

p−e =
(1− p)S−e

pSe + (1− p)S−e
(A.0.77)

The likelihood for the whole data set is

L(ne, n−e|p) = (pe)
ne(p−e)

n−e =
[pSe]

ne [(1− p)S−e]n−e

[Sep+ S−e(1− p)]N
(A.0.78)

The maximum of this likelihood can be found by taking the derivative of its log
and setting it to zero giving,

p̂ =
neS−e

[neS−e + n−eSe]
. (A.0.79)

29 Problem 29.
The normalized mass function is

p(M |α,M∗) =

(
M
M∗

)α
e−M/M∗

M∗Γ
(
α + 1, Mmin

M∗

) (A.0.80)

where Γ(β, x) is the incomplete gamma function. The likelihood for all the data is

lnL({Mi} |α,M∗) = ln
∏
i

p(Mi|α,M∗) (A.0.81)

= α

n∑
i

lnMi − (1 + α)n lnM∗ − n
M

M∗
− n ln Γ

(
α + 1,

Mmin

M∗

)
(A.0.82)

31 Problem 31 .
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The posterior in section 5.8.1 does not contain any constraint on the normalization
of the spectrum just its shape. Any normalization would show up in the likelihood
and evidence and drop cancel out. The expected number of observed stars is

N = V

∫ ∞
o

dl f(l) (A.0.83)

where it is assumed that f(l) is normalized to be the number of stars per volume. V
is the volume surveyed. The distribution of the actual number of stars is Poisson so
we can multiply the likelihood by

p(Nob|N) =
NNob

Nob!
e−N (A.0.84)

And then the posterior will give both a constraint on the shape and normalization of
the luminosity function.

32 Problem 32 .

〈
f̂(x)f̂(z)

〉
=

∑n
ij 〈yiyj〉 Kh (x, xi) Kh (z, xj)

[
∑n

i=1 Kh (x, xi)] [
∑n

i=1 Kh (z, xi)]
(A.0.85)

=

∑n
ij (Cij + f(xi)f(xj)) Kh (x, xi) Kh (z, xj)

[
∑n

i=1 Kh (x, xi)] [
∑n

i=1 Kh (z, xi)]
(A.0.86)

So

Ĉxz =

∑n
ij Cij Kh (x, xi) Kh (z, xj)

[
∑n

i=1 Kh (x, xi)] [
∑n

i=1 Kh (z, xi)]
(A.0.87)

If the noise is uncorrelated for each data point

Cxz =

∑n
i σ

2
i Kh (x, xi) Kh (z, xi)

[
∑n

i=1 Kh (x, xi)] [
∑n

i=1 Kh (z, xi)]
(A.0.88)

34 Problem 34.
In this case

tn =
1

n

n∑
i

xi (A.0.89)

t
(i)
n−1 =

1

n− 1

∑
j 6=i

xj =
1

n− 1

[
n∑
j

xj − xi

]
=

n

n− 1
tn −

1

n− 1
xi (A.0.90)
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and

tJn−1 =
1

n

n∑
i

t
(i)
n−1 =

1

n

n∑
i

[
n

n− 1
tn −

1

n− 1
xi

]
(A.0.91)

=
n

n− 1
tn −

1

n− 1
tn = tn (A.0.92)

tJn = ntn + (1− n)t
J
n−1 = tn (A.0.93)

So the jackknife estimate of the mean is just the mean, and since the mean is unbiased,
so is the jackknife mean.

V arJ [tn] =
n− 1

n

n∑
i=1

[
t
(i)
n−1 − t

J
n−1

]2

(A.0.94)

=
n− 1

n

n∑
i=1

[
t
(i)
n−1 − tn

]2

(A.0.95)

=
n− 1

n

n∑
i=1

[
(t

(i)
n−1)2 − 2t

(i)
n−1tn + t2n

]
(A.0.96)

=
n− 1

n

[
n∑
i=1

(t
(i)
n−1)2

]
− (n− 1)t2n (A.0.97)

=
n− 1

n

[
n∑
i=1

(
n

n− 1
tn −

1

n− 1
xi)

2

]
− (n− 1)t2n (A.0.98)

=
1

n(n− 1)

[
n∑
i=1

(ntn − xi)2

]
− (n− 1)t2n (A.0.99)

=
1

n(n− 1)

[
n∑
i=1

(n2t2n − 2ntnxi + x2
i )

]
− (n− 1)t2n (A.0.100)

=
1

n(n− 1)

[
n3t2n − 2n2t2n +

n∑
i=1

x2
i

]
− (n− 1)t2n (A.0.101)

=
1

n(n− 1)

[
n∑
i=1

x2
i − nt2n

]
(A.0.102)

=
1

n(n− 1)

[
n∑
i=1

(x2
i − tn)2

]
(A.0.103)
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In this case, the jackknife estimate of the variance of the mean is the same as the
variance in the mean that we already know.

35 Problem 35 .
In this case

tn =
1

n

n∑
i

(xi − x)2 =
1

n

[
n∑
i

x2
i − nx2

]
(A.0.104)

So, the jackknife sampled statistics are

t
(i)
n−1 =

1

n− 1

∑
j 6=i

(xj − x(i))2 (A.0.105)

=
1

n− 1

[∑
j 6=i

x2
j − (n− 1)

(
x(i)
)2

]
(A.0.106)

=
1

n− 1

[∑
j 6=i

x2
j − (n− 1)(

1

n− 1

∑
j 6=i

xj)
2

]
(A.0.107)

=
1

n− 1

[
n∑
j

x2
j − x2

i −
1

(n− 1)
(nx− xi)

]
(A.0.108)

Averaging this over i,

t̄Jn−1 =
1

n

∑
i

t(i)n−1 (A.0.109)

=
1

n(n− 1)

[
n
∑
j

x2
j −

∑
i

x2
i −

1

n− 1

(
n3x2 − 2n2x2 +

∑
i

x2
i

)]
(A.0.110)

... (A.0.111)

=
n− 2

(n− 1)2

[∑
i

x2
i − nx2

]
(A.0.112)

So, the jackknife bias-corrected estimator is

tJn = ntn + (1− n)t
J
n−1 (A.0.113)

=

[
n∑
i

x2
i − nx2

]
− n− 2

(n− 1)

[∑
i

x2
i − nx2

]
(A.0.114)

=
1

n− 1

[
n∑
i

x2
i − nx2

]
=

1

n− 1

n∑
i

(xi − x)2 (A.0.115)
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So, the bias is correctly removed.
38 Problem 38 .

1. The maximum likelihood solution for θθθ was given in the text.

θθθ =
[
WWW TNNN−1WWW

]−1
WWW TNNN−1d (A.0.116)

2. The log of the posterior is

ln(L) = −1

2
(WWWθθθ − d)TNNN−1(WWWθθθ − d)− 1

2
θθθTAAA−1θθθ + ... (A.0.117)

= −1

2
(Wilθθθl − di)N−1

ij (Wjkθk − dj)−
1

2
θiA

−1
ij θj + ... (A.0.118)

with Einstein’s summation convention implied and normalization constants ig-
nored. We take the derivative to find the maximum.

∂ ln(L)

∂θp
= −1

2

[
WipN

−1
ij (Wjkθk − dj) + (Wilθθθl − di)N−1

ij Wjp

]
− 1

2

[
A−1
pj θj + θiA

−1
ip

]
(A.0.119)

= −[WipN
−1
ij Wjk + A−1

pk ]θk +WipN
−1
ij dj (A.0.120)

where the fact that AAA and NNN must be symmetric has been used. Setting this
equal to zero and solving for θk gives the result

θθθ =
[
AAA−1 +WWW TNNN−1WWW

]−1
WWW TNNN−1ddd (A.0.121)

In some contexts, this solution is called a Wiener filter. When ddd are the pixels
of a noisy signal or the pixels of a noisy image this can be used to ”denoise” it
into a smoother signal or image as long as one knows the expected covariance
of the signal AAA or is willing to estimate it. WWW could be the psf of a telescope
that blurs the image or some other response function. This technique is used
to fill in

39 Problem 39.
The null hypothesis is that the Hubble constants are the same. If the distribution

of each measurement is Gaussian, then the distribution of their difference , ∆Ho =
H

(1)
o − H(2)

o , is Gaussian with a mean of zero and a variance of σ2
∆Ho

= σ2
1 + σ2

2. In
this case ∆Ho = 10 km/s/Mpc and σ∆Ho = 8.6 km/s/Mpc so ∆Ho/σ∆Ho = 1.162.
So, there is a little more than a ”one sigma” disagreement. The probability of getting
a value larger than this is 0.1226 ( in Python 1− scipy.stats.norm.cdf(1.162) ). This
would be a one-tail test. In this case, a two-tailed test would be more appropriate. The
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probability that |∆Ho/σ∆Ho| > 1.162 is 0.25 (twice the one tail). So, the hypothesis
that these measurements agree can be ruled out with 75 % confidence, which would
not be considered high enough to conclude that there is any inconsistency between
them.

If this confidence level was high (say larger than 99
40 Problem 40.

f = V ar[ρAα ]/V ar[ρBα ] = 2.612 (A.0.122)

In Python, the code for this calculation would be
A = np.array([ 97, 90, 95, 90, 101, 99, 99, 107,102, 95 ])
B = np.array([ 101, 94, 93, 96,94 ,97, 94, 98, 98, 90, 90, 95])

f = np.var(A)/np.var(B)
df1 = len(A) - 1
df2 = len(B) - 1

print ”p value =”, 1-scipy.stats.f.cdf(f, df1, df2)

The result is p value = 0.068, so as long as the distributions are Gaussian (big
if), we can be reasonably confident that they do not have the same variances. Since
the variance of A is larger, you would want to use company B. Note that we could
have used f = np.var(B)/np.var(A) which would be less than one and we would use
p value = scipy.stats.f.cdf( f, b, a ) which would give us the same result.

41 Problem 41.

PPP = m̂mmm̂mmT =
1

n

 1 1 . . .
1 1 . . .
...

...
. . .

 =
1

n
1 (A.0.123)

P̄̄P̄P = III − m̂mmm̂mmT =
1

n
(nIII − 1) (A.0.124)

43 Problem 43.

P̄̄P̄PP̄̄P̄P = (III −PPP )(III −PPP ) = III −PPP −PPP +PPPPPP = III −PPP = P̄̄P̄P (A.0.125)
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If xxxe is any eigenvector with eigenvalue ae

P̄̄P̄PP̄̄P̄Pxxxe = aeP̄̄P̄Pxxxe = a2
exxxe (A.0.126)

so a2
e = ae or ae = 0 or 1.
The cyclic property of the trace implies

tr [PPP ] = tr
[
MMM
(
MMMTCCC−1MMM

)−1
MMMTCCC−1

]
= tr

[(
MMMTCCC−1MMM

)−1 (
MMMTCCC−1MMM

)]
= tr [III] = k

(A.0.127)

Remember that MMM is a n-by-k matrix so MMMTCCC−1MMM is a k-by-k matrix.

tr
[
P̄̄P̄P
]

= tr [III −PPP ] = tr [III]− tr [PPP ] = n− k (A.0.128)

Since all the eigenvalues are either zero or one, the trace must be equal to the
number of non-zero eigenvalues which is equal to the number of eigenvectors that
span the subspace of P̄̄P̄P ’s range.

44 Problem 44.
46 Problem 46.

First∑
i

(Xi − Yi)2 =
∑
i

(Xi −X − Yi + Y )2 X = Y

(A.0.129)

=
∑
i

[
(Xi −X)2 + (Yi − Y )2 − 2(Xi −X)(Yi − Y )

]
(A.0.130)

= 2nVX − 2
∑
i

(Xi −X)(Yi − Y ) (A.0.131)

Then using

rs =

∑
i(Xi −X)(Yi − Y )

nVX
(A.0.132)

if follows that

rs = 1− 1

2nVX

∑
i

(Xi − Yi)2 (A.0.133)

= 1− 6

n(n2 − 1)

∑
i

(Xi − Yi)2 (A.0.134)

using (9.3.5).
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48 Problem 48 .
In this case, the likelihood is

L =
1

(2πσ2)n/2
exp

[
− 1

2σ2

∑
i

(xi − µ)2

]
(A.0.135)

The maximum likelihood estimates of µ and σ2 are

µ̂ =
1

n

∑
i

xi σ̂2 = ∆2 =
1

n

n∑
i=1

[xi − µ̂]2 (A.0.136)

The likelihood evaluated at its maximum is

lnLmax = − 1

2∆2

∑
i

(xi − µ)2 − n

2
ln ∆2 (A.0.137)

= −n
2
− n

2
ln ∆2 (A.0.138)

And so

BIC = 2 lnn+ n
(
ln ∆2 + 1

)
(A.0.139)

54 Problem 54.

〈A〉 =
a

N

N∑
i

〈xi〉 = aµ (A.0.140)

〈
(A− µ)2

〉
=
〈
A2
〉
− 2µ〈A〉+ µ2 (A.0.141)

=
( a
N

)2
N∑
ij

〈xixj〉 − 2aµ2 + µ2 (A.0.142)

=
( a
N

)2
(

N∑
ij

〈xixj〉

)
+ (1− 2a)µ2 (A.0.143)

=
( a
N

)2
(

N∑
i

〈
x2
i

〉
+

N∑
i 6=j

〈xixj〉

)
+ (1− 2a)µ2 (A.0.144)

=
( a
N

)2
(
N(σ2 + µ2) +

N∑
i 6=j

〈xi〉〈xj〉

)
+ (1− 2a)µ2 (A.0.145)

=
( a
N

)2 (
N(σ2 + µ2) +N(N − 1)µ2

)
+ (1− 2a)µ2 (A.0.146)
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Minimizing this gives:

2a

N

(
(σ2 + µ2) + (N − 1)µ2

)
− 2µ2 = 0 (A.0.147)

so the solution is

a =
µ2N

((σ2 + µ2) + (N − 1)µ2)
. (A.0.148)

You can see that for large N a→ 1 and this estimator becomes the sample mean.
You can also see that for any finite N , A is biased, i.e. 〈A〉 6= µ.

55 Problem 55 .
Let us first find the Fisher information

lnL = −1

2

n∑
i

(xi − µ)2

σ2
− n

2
ln(2πσ2) (A.0.149)

∂

∂σ2
lnL =

1

2[σ2]2

n∑
i

(xi − µ)2 − n

2σ2
(A.0.150)

∂2

∂(σ2)2
lnL = − 1

[σ2]3

n∑
i

(xi − µ)2 +
n

2σ4
(A.0.151)

Fσ2σ2 = −
〈

∂2

∂(σ2)2
lnL

〉
=

n

2σ4
(A.0.152)

Now we know that
[
n−1
σ2 S

2
n

]
∼ χ2

n−1. We also know that the variance of a χ2
n

distribution is 2n so

V ar
[
S2
n

]
=

2σ4

n− 1
(A.0.153)

So the efficiency is Fσ2σ2/V ar [S2
n] = n/(n− 1). For large n this makes no difference,

but for small n it is significantly above the limit.
59 Problem 59.

The log of the likelihood is

lnL(ddd) = −1

2
(ddd− µµµ)TCCC−1(ddd− µµµ)− 1

2
ln |CCC| − n

2
ln [2π] (A.0.154)
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Taking the first derivative with respect to a parameter, α, gives

∂

∂α
lnL(ddd) =

1

2
(µµµ,α )TCCC−1(ddd− µµµ) +

1

2
(ddd− µµµ)TCCC−1(µµµ,α )

− 1

2
(ddd− µµµ)TCCC−1,α (ddd− µµµ)− 1

2

d

dα
ln |CCC| (A.0.155)

where the subscripts with commas are derivatives. Using these formulas

d

dβ
ln |CCC| = tr

[
CCC−1CCC,β

]
(A.0.156)

we can change the last term

∂

∂α
lnL(ddd) =

1

2
(µµµ,α )TCCC−1(ddd− µµµ) +

1

2
(ddd− µµµ)TCCC−1(µµµ,α )

− 1

2
(ddd− µµµ)TCCC−1,α (ddd− µµµ)− 1

2
tr
[
CCC−1CCC,α

]
(A.0.157)

Now we know that 〈(ddd− µµµ)〉 = 0 so when we take another derivative and average all
the terms that are linear in this will be zero,〈

∂2

∂α∂β
lnL(ddd)

〉
= −1

2
(µµµ,α )TCCC−1(µµµ,β )− 1

2
(µµµ,β )TCCC−1(µµµ,α )− 1

2
(ddd− µµµ)TCCC−1,αβ (ddd− µµµ)

(A.0.158)

−1

2
tr
[
CCC−1,αCCC,β +CCC−1CCC,βα

]
(A.0.159)

The first two terms are the same becauseCCC is symmetric and and using
〈
(ddd− µµµ)(ddd− µµµ)T

〉
=

CCC in the third term

Fαβ = −
〈

∂2

∂α∂β
lnL(ddd)

〉
= µµµ,Tα CCC

−1µµµ,β +
1

2
tr
[
CCC−1,αβCCC

]
+

1

2
tr
[
CCC−1,αCCC,β +CCC−1CCC,βα

]
(A.0.160)

Using

CCC−1,β = −CCC−1CCC,βCCC
−1 (A.0.161)

and the chain rule

CCC−1,αβ = CCC−1CCC,αCCC
−1CCC,βCCC

−1 +CCC−1CCC,βCCC
−1CCC,αCCC

−1 −CCC−1CCC,βαCCC
−1 (A.0.162)
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Canceling some terms out and using the fact the trace of a product of matrices does
not depend on the order of the product one gets equation (12.5.1).

61 Problem 61.

We can solve this by looking at the joint probability of xxxn+1, xxxn and xxxn−1 and
applying the product rule

p(xxxn+1,xxxn,xxxn−1) = p(xxxn+1|xxxn,xxxn−1)p(xxxn,xxxn−1) (A.0.163)

= p(xxxn+1|xxxn,xxxn−1)p(xxxn|xxxn−1)p(xxxn−1) (A.0.164)

= p(xxxn+1|xxxn)p(xxxn|xxxn−1)p(xxxn−1) (A.0.165)

The last step comes from the requirement that a Markov chain’s transition kernel be
expressible as only dependent on the previous state. As we are showing here, this
does not mean that a transition probability that skips one or more generations cannot
be written down and that it is not dependent on the state xxxn−1.

We can get the joint probability of xxxn+1 and xxxn−1 by marginalizing over xxxn,

p(xxxn+1,xxxn−1) =

∫ ∞
−∞

dxxxn p(xxxn+1,xxxn,xxxn−1) (A.0.166)

= p(xxxn−1)

∫ ∞
−∞

dxxxn p(xxxn+1|xxxn)p(xxxn|xxxn−1) (A.0.167)

From the product rule we know p(xxxn+1,xxxn−1) = p(xxxn−1)p(xxxn+1|xxxn−1) so

p(xxxn+1|xxxn−1) =

∫ ∞
−∞

dxxxn p(xxxn+1|xxxn)p(xxxn|xxxn−1) (A.0.168)

So to get from xxxn−1 to xxxn+1 we need to account for all possible intermediate states,
xxxn. If we continued this to more steps we would find the transition by ”propagating”
through more intermediate states. This starts to remind one of path integrals and
Feynman diagrams and indeed there is a connection.

62 Problem 62.
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The acceptance probability for a Gibbs step will be

α(xxxn+1,xxxn) =
q(xxxn|xxxn+1)

q(xxxn+1|xxxn)

f(xxxn+1)

f(xxxn)
(A.0.169)

=
f(x

(i)
n |xxx(i−)

n+1)

f(x
(i)
n+1|xxx

(i−)
n )

f(xxx
(i)
n+1,xxx

(i−)
n+1)

f(xxx
(i)
n ,xxx

(i−)
n )

(A.0.170)

=
f(x

(i)
n |xxx(i−)

n )

f(x
(i)
n+1|xxx

(i−)
n )

f(xxx
(i)
n+1,xxx

(i−)
n )

f(xxx
(i)
n ,xxx

(i−)
n )

xxx
(i−)
n+1 = xxx(i−)

n (A.0.171)

=
f(x

(i)
n |xxx(i−)

n )

f(x
(i)
n+1|xxx

(i−)
n )

f(xxx
(i−)
n )f(xxx

(i)
n+1|xxx

(i−)
n )

f(xxx
(i−)
n )f(xxx

(i)
n |xxx(i−)

n )
(A.0.172)

= 1 (A.0.173)
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A.1 Matrix basics

(AAABBBCCC . . . )T = . . .CCCTBBBTAAAT (A.1.1)

(AAABBBCCC . . . )−1 = . . .CCC−1BBB−1AAA−1 (A.1.2)

(AAAT )−1 = (AAA−1)T (A.1.3)

(AAA+BBB)T = AAAT +BBBT (A.1.4)

Some properties of the determinant

|AAA| =
∏
i

λi where λi are the eigenvalues (A.1.5)

|AAA−1| = 1/|AAA| (A.1.6)

|BBBAAA| = |BBB||AAA| (A.1.7)

|cAAA| = cn|AAA| (A.1.8)

|AAAT | = |AAA| (A.1.9)

Some properties of the trace

tr(AAA) =
∑
i

Aii (A.1.10)

tr(AAA) =
∑
i

λi where λi are the eigenvalues (A.1.11)

tr(AAAT ) = tr(AAA) (A.1.12)

tr(AAABBB) = tr(BBBAAA) (A.1.13)

tr(AAA+BBB) = tr(AAA) + tr(BBB) (A.1.14)

derivatives of matrices

d

dβ
CCC−1 = −CCC−1

[
∂CCC

∂β

]
CCC−1 (A.1.15)

(A.1.16)

d

dβ
ln |CCC| = d

dβ
ln

(∏
i

λi

)
=

d

dβ

∑
i

lnλi =
∑
i

1

λi

dλi
dβ

= tr

[
CCC−1∂CCC

∂β

]
(A.1.17)

AAA is an orthogonal matrix if and only if

AAATAAA = AAAAAAT = III (A.1.18)
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An orthogonal matrix has the following properties

AAAT = AAA−1 (A.1.19)

|AAA| = ±1 (A.1.20)

The |λi| = 1 for all eigenvalues and the magnitude of all eigenvactors are 1.
CCC is a positive definite matrix if

xxxTCCCxxx > 0 ∀xxx. (A.1.21)

It has the following properties

• all eigenvalues are positive

• tr(CCC) > 0

• all diagonal elements are positive, CCCii > 0,∀i

• CCC is invertible

The covariance matrix is always positive definite.

A.2 Matrix decompositions

Eigenvalue decomposition
If AAA is a N ×N real matrix with linear independent columns the it can be decom-

posed as

AAA = MMMΛΛΛMMM−1 (A.2.1)

where ΛΛΛ is diagonal and Λii is the ith eigenvalue and the ith column of MMM is the
corresponding eigenvector. MMM will be orthogonal, i.e. MMM−1 = MMMT .

Single-value decomposition
If AAA is a M ×N matrix it can be factorized as

AAA = SSSVVVDDD† (A.2.2)

where

• SSS is a unitary (orthogonal if real) M ×M matrix, i.e. SSSSSS† = SSS†SSS = III

• VVV is a diagonal matrix M ×N with non-negative real entries

• DDD is a unitary(orthogonal if real) N ×N matrix

DDD† is the Hermitian conjugate ofDDD. In the case a real matrixDDD† = DDDT . The diagonal
elements of VVV are called the singular values of AAA. The columns of DDD are called the
right-singular vectors. They are the eigenvectors of AAAAAA†. The columns of SSS the
left-singular vectors and are the eigenvectors of AAA†AAA.
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”A and B” A,B
”A or B” A||B
continuous random variables x,y,xi,yi
vector of random variables xxx or ~x
discrete numbers, sometimes random n,m
parameters θα or pα
estimator of parameter θα θ̃α
maximum likelihood solution for parameter θα θ̂α
data DDD or di
indexes data or for multiple random numbers i, j
statistical and/or theoretical model M
Gaussian or Normal pdf G (xxx |µµµ,CCC )
xxx is normally distributed xxx ∼ N (µµµ,σσσ)
x is χ2 distributed with n degrees of freedom x ∼ χ2

n

arithmetic mean of N samples x̄N
likelihood of data given model L(DDD|Mi) or P (DDD|Mi)
Bayesian evidence of data E(DDD)
Heaviside function, 1 when B is true, 0 otherwise Θ(B)
factorial N ! = N(N − 1)(N − 2) . . . 1
double factorial N !! = N(N − 2)(N − 4) . . .
expectation value of f(x) 〈f(x)〉 or E[f(x)]

Table A.1: notation

A.3 Notation

Notation may vary but in general I follow the guide in table A.1
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A.4 Some useful integrals and mathematical defi-

nitions

A.4.1 Gaussian integrals

∫ ∞
−∞

dx e−
x2

2 =
√

2π (A.4.1)∫ ∞
−∞

dx e−(ax2+bx+c) = e−c
∫ ∞
−∞

dx e
−
(√

ax+ b
2
√
a

)2
+ b2

4a = e−c+
b2

4a

∫ ∞
−∞

dy√
a
ey

2

=

√
π

a
e−c+

b2

4a

(A.4.2)

∫ ∞
0

dx xne−
1
2
Ax2

= 2
n−1

2 A−
n+1

2 Γ

(
n+ 1

2

)
n > −1 (A.4.3)

A.4.2 Stirling’s approximation

lnN ! ' N lnN −N for N � 1 (A.4.4)

or more accurately

N ! '
√

2πN

(
N

e

)N
for N � 1 (A.4.5)

A.4.3 The Gamma function∫∞
0
dx xne−x

2
= 1

2
Γ
(
n+1

2

)∫∞
0
dx xz−1e−x = Γ(z)

Γ(n) = (n− 1)! n = 1, 2, . . .

Γ
(

1
2

+ n
)

= (2n)!
4nn!

√
π n = 0, 1, 2, . . .

(A.4.6)

The incomplete gamma function for positive real a and b is

Γ(z, a, b) =

∫ b

a

dx xz−1e−x (A.4.7)

A.4.4 Error function

erf(z) =
2√
π

∫ z

0

e−u
2

du =
1√
π

∫ z

−z
e−u

2

du (A.4.8)
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1√
2πσ

∫ a

b

dx e−
x2

2σ =
1

2

[
erf

(
a√
2σ

)
− erf

(
b√
2σ

)]
(A.4.9)

erf(∞) = 1 erf(−x) = −erf(x) (A.4.10)

The cumulative distribution for a standard normal distribution is

F (z) =
1

2
[1 + erf(z)] . (A.4.11)

A.4.5 Beta function

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
=

∫ 1

0

dx xp−1(1− x)q−1 (A.4.12)

There are also many integral forms of this beta function.

A.4.6 Miscellaneous

lim
N→∞

[
1 +

t2

2N

]N
= e

t2

2 (A.4.13)

Sum of arithmetic progression

n∑
i=0

i =
n(n+ 1)

2
(A.4.14)

Sum of geometric progression

n−1∑
i=0

ai =
1− an

1− a
(A.4.15)

A.5 Data Whitening

White noise refers to noise that is not correlated and equal variance in all compo-
nents. Is yyy has white noise then its covariance matrix is proportional to the identity
matrix

< yyyyyyT >= λIII (A.5.1)
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Note that the Fourier transform of white noise will also be white noise. In an image
this would be homogenious, uncorrelated noise.

In some cases it is useful to transform the data into a form that has the covariance
of white noise with λ = 1. This is called whitening or pre-whitening the data. This
can sometimes make algebra easier, proofs simpler and it can be used to transform a
correlated χ2 into a least-squared problem for example.

First some preliminaries. We can define a standardized data vector

zzz = ΣΣΣ−1/2xxx (A.5.2)

where ΣΣΣ−1/2 is the diagonal matrix with ΣΣΣ
−1/2
ii = 1/

√
CCCii or in other words 1/σ1, . . . , 1/σn.

This is the multivariate version of the standardized variable introduced in section 3.2.
The covariance of this data vector,

〈
zzzzzzT

〉
will be the correlation matrix,

PPP =
〈
wwwwwwT

〉
= ΣΣΣ−1/2CCCΣΣΣ−1/2 (A.5.3)

This matrix will have ones on the diagonal and be scale invariant in the sense that
it will not depend on the units used for the data. This is the matrix of Person’s
correlation coefficients which is useful for assessing how correlated the variables are.

The eigenvalue decomposition of the covariance matrix is

CCC = MMMΛΛΛMMMT (A.5.4)

were ΛΛΛ is a diagonal matrix with the variances of each variable on the diagonal,
σ2

1, . . . , σ
2
n. he components of yyy will have variances equal to one, but they will still be

correlated with each other – their covariance will not be diagonal.
The whitened data vector, www, is related to the original data through the whitening

matrix WWW ,

www = WWWxxx (A.5.5)

If

WWW TWWW = CCC−1 (A.5.6)

then the requirement the < wwwwwwT >= III will be satisfied. This does not fully specify
the whitening matrix however. If RRR is a rotation matrix such that RRRT = RRR−1 then all
matrices RRRWWW will be valid whitening matrices if WWW is. Several common choices for
WWW are used.

One choice is to use the matrix

WWW = CCC−1/2 = MMMΛΛΛ−1/2MMMT (A.5.7)
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It can be shown that the components of www will be the closest to the original variables
as possible in this case.

Another option is to use the PCA or eigenvector bases in which case

WWW = ΛΛΛ−1/2MMMT (A.5.8)

This can be useful when the data is being compressed by removing modes with low
signal-to-noise.

Another choice is to use the Cholesky decomposition of the covariance matrix

CCC−1 = LLLLLLT (A.5.9)

where LLL is lower triangular. This is a unique decomposition. The whitening matrix
is

WWW = LLLT (A.5.10)

Because LLL is triangular one of the new variable will just be a re-scaling of the original
variable, the next one will be composed of just two of the original variable, etc.
This might be useful if there is a particular order to the variables that are being
analyzed. Kessy et al. (2018) give an interesting summery of whitening options and
their properties.

Consider the case where the covariance is a contribution from the a signal, SSS, and
correlated noise NNN which is known so that the total covariance is

CCC = SSS +NNN (A.5.11)

We can transform this with NNN−1/2

NNN−1/2CCCNNN−1/2 = NNN−1/2SSSNNN−1/2 + III (A.5.12)

Let us do a further eigen-decomposition of the whitened signal

NNN−1/2SSSNNN−1/2 = MMMΛΛΛMMMT (A.5.13)

which because MMM is orthogonal implies

NNN−1/2CCCNNN−1/2 = MMM (ΛΛΛ + III)MMMT (A.5.14)

Thus the modes

xxx′ = MMMTNNN−1/2xxx (A.5.15)
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have the covariance 〈
xxx′xxx′T

〉
= ΛΛΛ + III (A.5.16)

These are call Karhunen-Loéve modes or signal-to-noise modes. They are often
used for data compression. The modes with variances close to one will be dominated
be noise and those with larger variances will be dominated by signal. In some circum-
stances it is convenient for computational or data transport reasons to throw away
low signal to noise modes and one can do this without significant lose of information.
Note that finding the Karhunen-Loéve modes can be very computationally intensive
(you need to find NNN−1/2 and the the eigen-decomposition of NNN−1/2CCCNNN−1/2) so even if
the remainder of the data analysis can proceed with greatly compressed data there is
not automatically a savings in processing time.
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R2 statistic, 130
α-trimmed mean, 133
χ2

model selection, 212

activation function, 193
Akaike information criterion, 186
aleatoric uncertainty, 128
ancillary statistics, 156
Anderson-Darling test, 165
anticorrelated, 49
Approximate Bayesian Computation, 236
arithmetic mean, 64
asymptotic normal approximations, 203
asymptotically unbiased, 172
asymptotically unbiased estimator, 68

Barnard’s test, 191
Bayes’ rule, 77
Bayes’ theorem, 15
Bayes’s factor, 173
Bayesian inference, 75
Bayesian Information Criterion, 184
Bayesian model checking, 186
Bayesian model selection, 173
Bayesian prediction, 115
Bernoulli distribution, 21
Bernoulli trials, 21
bias, 128
bias–variance trade-off, 128
biased, 68, 171
BIC, 184
binomial coefficient, 20, 25

binomial distribution, 20, 34
binomial expansion, 21
bootstrap resampling, 121
Boschloos’s test, 191
breakdown point, 132

categorical variables, 189
Cauchy distribution, 32, 40
Cauchy–Schwarz inequality, 49
censoring

likelihood, 102
regression, 112

central limit theorem, 41
central moments, 31
chain, 222
characteristic function, 34, 43, 45
Chebyshev inequality, 40
chi-squared, 147
chi-squared distribution, 58
chi-squared test

one parameter, 143
Cholesky decomposition, 278
completion of squares, 57
conditional probability, 14
confidence intervals, 149
confidence level, 139
confirmation bias, 77
contingency tables, 189
correlated variables, 49
correlation coefficient, 49
correlation matrix, 277
cost function, 130
covariance, 48

280
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covariance matrix, 48
Cramér-Rao limit, 200
credibility region, 149
Cremér-von Mises test, 165
cross-entropy, 195, 250
cross-validation, 129
cumulative distribution function, 30
curse of high dimensionality, 221, 227

degenerate parameters, 202
dependent variable, 106
detailed balance, 223
disjoint probability, 14
double factorial, 39

Eddington bias, 97, 99
efficient estimator, 200
eigendecomposition, 55
Eigenvalue decomposition, 273
empirical distribution function, 163
ergodic chains, 222
error function, 39
estimator, 64, 171
evidence, 76
expectation value, 30
extended sum rule, 15

F-distribution, 140
F-test, 141
feature variables, 129
figure of merit, 206
Fisher information, 185
Fisher information matrix, 90, 199
Fisher’s exact test, 190
forecasting errors, 201
forward modeling, 236

gamma distribution, 101
gamma function, 60
Gaussian distribution, 38
Gelman-Rubin diagnostic, 231

Gibbs sampling, 227
Gibbs’ entropy, 243

Huber loss function, 134
hypergeometric distribution, 26, 191
hypothesis testing, 137

importance sampling, 219
improper prior, 90
independent, 15, 49
independent variable, 106
interpolation, 107
inverse noise weighting, 67
Isserlis’ theorem, 56

jackknife, 129
jackknife resampling, 125
joint probability, 14

Karhunen-Loéve modes, 279
Kendall’s correlation coefficient, 169
Kolmogorov-Smirnov test, 163
Kullback–Leibler divergence, 247
kurtosis, 31

L-estimators, 133
Lagrange multipliers, 66
LASSO regression, 131
law of large numbers, 63, 213
least-squares, 113
left-singular vectors, 273
likelihood, 76
likelihood ratio test, 212
likelihoodless Bayesian inference, 236
linear model, 105
linear regression, 105
LOESS, 118
logistic regression, 192
lognormal distribution, 46
Lorentzian profile, 32
loss function, 130, 133



282 INDEX

lower/upper limits , see censoring
LOWESS, 118

M-estimators, 133
Malmquist bias, 101
Mann-Whitney test, 169
marginal distribution, 33
marginalization, 16, 33, 87
Markov chain, 222
Markov’s inequality, 41
maximum likelihood estimator, 80, 107,

197, 209
maximum posterior estimate, 80
mean, 31
mean deviation, 31
mean squared error, 113
median, 30, 72
Metropolis-Hastings algorithm, 223
minimum variance estimator, 66
MLE, 197
mode, 30
moment generating function (MGF), 33
moments, 31
Monte Carlo Integration, 217
Monte Carlo sampling, 124
Moore-Penrose inverse, 113
multimodal, 30
multinomial distribution, 22, 49
multinomial logistic regression, 194
multivariate distribution, 48
multivariate Gaussian, 53
mutually exclusive, 15

Nadaraya-Watson estimator, 118
nested models, 151
nested sampling, 232
non-informative prior, 89
nonparametric bootstrap, 121, 124
nonparametric regression, 118
normal distribution, 38

nuisance parameters, 87
null hypothesis, 137

Occam’s factor, 176
odds, 173
one-sided test, 138
orthogonal least squares, 112
orthogonal matrix, 55, 272
overdetermined, 107

p-value, 138, 139
Parametric bootstrap, 124
parametric bootstrap, 156
Pareto distribution, 47
PCA, 52
Pearson’s correlation coefficient, 49, 159,

166
permutation test, 167
pivot, 139
Poisson distribution, 34
positive definite matrix, 273
posterior predictive p-values, 187
posterior probability, 76
power-law distribution, 47
precision matrix, 48
predicted error (PE), 129
predictor variable, 106
principal components, 52
principle of indifference, 12
prior, 76
probability distribution function (PDF),

29
probability mass function, 30
product rule, 14
pseudoinverse, 113

Q-Q plot, see Quantile-Quantile plot 160
Quantile function, 30
Quantile-Quantile plot, 160
quantiles, 74, 216
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random variable, 30
rank, 74, 166
rank-sum test, 169
reduced χ2, 60, 147
regression, 105
regularization, 130
regularization function, 131
relative entropy, 246, 247
resistant statistics, 132
ridge regression, 131
right-singular vectors, 273
robust, 166
robustness, 132

sample mean, 64
Schechter function, 101
score test, 186
selection function, 99
Sequential Importance Sampling, 221
Shannon entropy, 240
shot noise, 46
sigmoid function, 193
signal-to-noise modes, 279
significance, 139
Single-value decomposition, 115, 273
singular values, 273
skewness, 31
softmax, 194
Spearman’s correlation coefficient, 166
standard deviation, 31
standardized variable, 31, 114, 277
statistic, 63

estimator, 64, 171
goodness-of-fit, 137, 156

statistical model, 14
Stirling’s approximation, 23, 45, 275
student’s t-distribution, 62, 70
sufficient statistics, 156
sum rule, 14
supervised learning, 126, 129

surprise, 248

t-distribution, 62, 70, 88, 140, 148
t-test, 148
test normality, 163
transition kernel, 222
trimmed least squares, 133
truncation, 100
Tukey’s biweight function, 134
two-sided test, 139
Type I errors, 138
Type II errors, 138

unbiased, 64
underdetermined, 107
uniform prior, 89
unimodal, 30
upper/lower limits , see censoring

variance, 31

Wald test, 186
weighted mean, 66
white noise, 276
whitening, 114, 276
Wick’s theorem, 56
Wiener filter, 132, 264
Wilcoxon’s U test, 169
Wilcoxon-Mann-Whitney test, 169
Wilk’s theorem, 152
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